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By applying the method of geometric satellite triangulation the three-dimensional positions of 45
stations distributed around the world were determined with an average positional mean error of +4.5 m.
Error theoretical investigations indicate that the result, derived in principle by interpolation into the
astronomical right ascension-declination system, is essentially Iree of significant systematic errors. A com-
parison of this result of the geometric method with the corresponding result obtained by dynamic satellite
geodesy from Doppler data, as computed by the Defense Mapping Agency (DMA) and the Navy, shows
excellent overall agreement, with significant discrepancies in a few places on the globe. A combination
solution that fully respeets the covariance ol the photogrammetrically derived directions leads to mass-
centered station positions with an average positional mean error of £3.7 m. The scale of the system, deter-
mined by several scalars measured on the earth’s surface, suggests an equatorial radius for a best-fitting

ellipsoid of 6,378,130 m.

METHOD OF GEOMETRIC SATELLITE TRIANGULATION

The principle of the method of geometric satellite triangula-
tion is based on combining a large number of individual direc-
tions to satellites in a three-dimensional triangulation. These
satellite directions needed at the stations to be triangulated are
obtained by interpolating the individual images of the chopped
satellite trail into the framework of the star background pres-
ent on the photograms [Schmid, 1972, 1974].

Directions to the star images are first computed basically as
functions of the observing datum, the time of observation
(UT1), and the instantaneous pole coordinates. These direc-
tions are referenced either to the astronomic right ascension-
declination system for a specific epoch or, after appropriate
rotation, to an earth-fixed three-dimensional reference co-
ordinate system in which the observation station locations are
to be triangulated.

The satellite images are recorded in an arbitrary time se-
quence, which is, however, common for all stations observing
an event. The satellite images are then interpolated into the
directions to the stars, i.e., into the background of stars, and
thus fixed in the same reference system to which the star im-
ages have been reduced. The three-dimensional position of the
observing stations is found by assigning to them a location
such that the satellite directions emanating from the various
stations lead to the determination of the three-dimensional
geometry of all observed satellite transits.

It is not necessary, aside from the practical requirements of
the field observer, to know in advance the orbit of the satellite.
The points of the orbit serve merely as elevated triangulation
targets, and only the condition for intersection of correspond-
ing rays is needed to fix the positions of the observation sites.
As a consequent requirement, such rays must satisfy the
‘geometric condition of simultaneity.” That is to say, they must
refer to specific points on the satellite orbit. This condition is
automatically met, for example, in case the satellite trail is
depicted by the recording of a sequence of flashes emitted by
the satellite. ’

Since to date in practice a sufficient number of such flashes
cannot be generated to reduce the influence of scintillation
adequately, we photograph the satellite in the portion of its or-
bit illuminated by the sun. In this method the trace of the orbit
is chopped by means of a rotating disk shutter in the camera
into a series of time-dependent individual images. For physical
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as well as technical reasons it is, however, impossible to
generate satellite images at the several observing stations that
satisfy initially the geometric condition of simultaneity.
Basically, it therefore becomes necessary to fit the bundle of
directions to the satellite for a particular event as closely as
possible to the satellite orbit, which is by its nature continuous.
Since only a small portion of the orbit (about 1-2%) is in-
volved, the observed curve may be considered as part of an
elliptical orbit obeying the Keplerian laws of motion, a situa-
tion that predicates that the satellite directions are referred to
an inertial system as approximated, for instance, by the right
ascension-declination system.

On the other hand, a solution based on satellite directions
referred to an earth-fixed coordinate system requires, because
of the earth’s rotation, the assumption of a twisted space curve
as a model for the satellite orbit.

In such a procedure, satellite triangulation is basically sub-
ject to five sources of error. First are the uncertainties
associated with the star catalog data. The second that must
be considered consists of the accidental errors in time deter-
mination for the star and satellite exposures. The third consists
of the accidental errors in coordinate measurement of the star
and satellite images; fourth, the influence of scintillation act-
ing as an accidental error source; and finally, there is the ir-
regular distortion of the photographic emulsion.

Such a presentation of the error budget assumes first that
the corresponding systematic errors are sufficiently small and-
second that the mathematical model used to reconstruct the
photographic process is sufficiently close to reality. Further-
more, the assumption must be valid that the photographed
sections of the satellite orbit are in their nature such that in a
qualitative sense they may be used as a tool for interpolation.
All these assumptions must hold within such accuracy limits
that the influence of the remaining imperfections on the
triangulation computations remains a magnitude smaller than
the propagation of the five cited basic error sources.

Obviously, all further secondary corrections such as pole
displacement, astronomic and parallactic refraction, satellite
phase angle, and light travel time must correspond to
geometric physical reality with such accuracy that the effect of
remaining biases is negligibly small.

The rigorous error theoretical treatment of the satellite
triangulation method leads, even from this point of view, to a
mutually correlated matrix schematic. The individual plates
are essentially uncorrelated with respect to the photogram-
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metric reduction so far as processing the medsured star and
satellite coordinates is concerned. However, for all plates in-
troduced into a satellite triangulation system, only one set of
reference stars, limited in number and distribution, is
available.

Hence the same group of stars appears repeatedly not only
on the same plate, as a result of star registration belore, dur-
ing, and after the event, but also such similar groups are
recorded on a number of plates.

In the observations for the world net, stars up to eighth
magnitude and with maximum mean position errors of 0.4”
were selected from the SAQ star catalog. This selection gives
us about 20,000 stars at our disposal [Bossler, 1966]. With an
average frequency of about 100 stars per plate and ap-
proximately 3000 plates in the world net, this means that each
star appears, on the average, on 15 plates. Since strictly speak-
ing there can only result one pair of corrections for each
observed star in the adjustment, the mathematical reconstruc-
tions of all the photogrammetric bundles and their orien-
tations are correlated to such a degree that they should really
be adjusted as a unit.

In the spatial triangulation of the observing stations the
satellite directions are now combined to reconstruct the

geometry of the recorded satellite orbit curve. The intersection

“condition for the rays applied in this process (either direct or

indirect by way of fitting to a spatial model of the orbit) con-
tains additional orientation information, similar to the relative
orientation in the classical photogrammetric restitution
process. But since all photogrammetric bundle parameters that
determine directions to the satellite and their orientation quan-
tities are correlated, there results a correlation between all re-
corded satellite events; i.e., the determination of observing sta-
tion positions should, together with the determination ol all
observed satellite orbital curves, be obtained from one com-
mon adjustment with the use of the covariance matrix involv-
ing all reconstructed photogrammetric bundles and their
orientations.

Processing the approximately 2500 plates available in Lhe
world net requires the computation of nearly 50,000 interpola-
tion parameters. For the approximately 1100 recorded events,
almost 7000 orbital parameters would have to be determined.
A simultaneous adjustment ol such a large number of cor-
related unknowns is at present, even with the largest available
computer, neither economically feasible nor, because of the

required computational accuracy, capable of being realized.

One has therefore to make concessions. From the error
theoretical point of view, probably the most serious com-
promise is the necessity of separately determining the photo-
grammetric interpolation parameters for each plate, since
these parameters determine absolute directions to the inter-
polated satellite images and are therefore of decisive
significance in fixing the spatial positions of the observation
stations. In conformance with the weights given with the star
data, one pair of corrections for the corresponding star coor-
dinates is obtained in this procedure in each bundle
reconstruction adjustment, independent of the number of im-
ages of the particular star.

As was mentioned previously, the accidental errors of time
designations for the star and satellite recordings must be taken
into constderation. In the adjustment for the single camera this
requirement is taken care of automatically by carrying cor-
rections to the right ascensions. These being geometrically
equivalent to UT], it is necessary only to compute weights [or
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the introduced right ascension values, the uncertainties in time
associated with the recorded instants of observation being
taken into account. For the instrumentation used in the world
net this accidental timing error amounts to less than a milli-
second so far as the registration of the shutter action is con-
cerned. Since the available UT] is in itself scarcely better than
+2 ms (which acts as a system error in the orientation lor the
individual plate), the assumption of a +3-ms overall un-
certainty in the determination of time for the star exposures
seems reasonable. The inaccuracy of a direction correspond-
ing to this time uncertainty is +0.045”, a magnitude con-
siderably less than the photogrammetric measuring accuracy
obtained with the BC-4 system and the 450-mm lens, hence
negligible.

A similar conclusion can be drawn with respect to the in-
fluence of random errors of the synchronization procedure on
the satellite images. By means of periodic control of timing the
instants of observation at the various stations are fixed in rela-
tion to each other within at least + 100 us. The most critical sit-
uation would arise for the Echo satellite with a speed of 8 km/s
and minimum distance of 1000 km, where 100 us corresponds
to a change in direction of £0.16”. With the Pageos satellite
used in the world net, because of its greater distance and con-
sequent slower speed, a timing error of +£100 us results in a
maximal direction uncertainty of only £0.04”. Although this is
negligibly small, a calculation employed in the adjustment dis-
cussed later on, which is designed primarily to eliminate scin-
tillation with polynomial curve fitting, serves to adjust as well
any existing random timing errors in the synchronization.

Existing correlations between the separately reconstructed
bundles of directions to stars are, as was detailed above,
neglected. Thus for each single-camera computation, in-
dividual parameters are determined for the interpolation
model including, of course, the covariance matrix associated
with these parameters, which is of basic significance for further
evaluations.

In the step of the adjustment that now follows, the locations
of the observing stations are computed. Their position in space
is fixed by the condition that the bundles of directions to the
satellite issuing from these stations must lead to the geometry
of all satellite orbital curves that have been recorded. Since
each bundle of directions is obtained basically by the intet-
polation of the corresponding satellite images into the relevant
interpolation model and since these models are now no longer
correlated, it follows that the individual satellite orbit deter-
minations are likewise uncorrelated. This situation results in
an essential simplification of the data processing, since the or-
bit determinations can be processed sequentially and care need
only be taken that their cumulative effect bears on the station
determination.

The condition of intersection on which, as was mentioned
previously, is based the determination of the geometry of the
observed satellite orbits (either directly or indirectly by way of
a fit to a spatial orbital model) basically contains additional in-
formation for determining the parameters of the relevant inter-
polation models. It follows that not only the coordinates of the
stations and the parameters specifying the geometry of the
satellite orbit must appear as unknowns in the adjustment, but
so must all parameters of all interpolation models involved,
together with their individual variance-covariance matrices
referred to above.

The resulting system of normal equations is Bv = A with a
range in weights P from zero to infinity. By designating the
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vector of corrections to the measured satellite image coor-
dinates by v,, the correction vector for the previously com-
puted bundle interpolation parameters O by v,, the correction
vector for the approximated satellite orbital positions by vs
and finally the correction vector for the approximated station
coordinates by v, the corresponding normal equation system
can be written as is indicated in Figure 1. With X, supplemen-
tary conditions are introduced that may exist between the
stations to be triangulated such as, for example, measured dis-
tances for scale determination. A description of the notation
and the mathematical theory outlined here will be found in the
work by Schmid and Schmid [1965]. The specific application
above is detailed in the work by Schmid [1972, 1974].

Figure 2 shows the normal equation system after these
functional relations have been introduced. The corresponding
set of correlates is designated by k. The system reduced down
to satellite orbit and station coordinates is given in the lower
portion of Figure 2.

Because the image coordinates can be expressed as func-
tions of the interpolation parameters describing the photo-
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grammetric bundle, of the coordinates of the satellite
position, and of the relevant coordinates of the observing sta-
tion, it is possible, since the individual bundle reconstructions
are uncorrelated, to replace the correction vector to the inter-
polation parameters by a corresponding correction vector to
the image coordinates, this process thus reducing decisively the
number of unknowns to be carried.

As is apparent from the lower portion of Figure 2, this com-
putational procedure is completely rigorous only when the ex-
pression 4, is carried along on the right-hand side of the
reduced normal equation system, i.e., with the vector of ab-
solute terms; hence a rigorous elimination of the O parameters
is not possible. However, since in the first iteration loop the O
values as obtained from the single-camera adjustment are in-
troduced into the triangulation adjustment as approximation
values, A, is initially a zero vector. This means that the
elimination of the O parameters is valid to within the first
order of the A, terms. Moreover, owing to the large number of
absolute control points (in our case about 100 stars per plate)
the influence of the orientation contribution resulting from the
intersection condition is quite small, so that the considerable
gain in simplicity derived by the elimination of these
parameters in the triangulation adjustment justifies the
procedure.

This simplification leaves the unknowns that are to be deter-
mined by means of the condition of intersection of the rays:
the coordinates of the observing station for one and the
parameters describing the geometry of the satellite orbital
curves. From a conceptual point of view it follows that the
bundles of directions to a satellite assigned to a particular
satellite pass must fit themselves as closely as possible in the
sense of an adjustment to the orbital curve, which is subject
first of all to the geometric consequences of Kepler’s first law,
according to which the orbit can be expressed in an inertial
system by the equation of an ellipse.

Furthermore, the fitting process must do justice to the
dynamic content of Kepler’s second law, according to which
the true anomaly is a function of time. It seems convenient in
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Fig. 2. The normal equation system augmented with additional constraints. The lower portion shows the reduced matrix
after elimination of the auxiliary parameters v, vy, ki, ko, and k;.
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the application to develop the true anomaly as a series in the
eccentricity and the mean anomaly. Basically speaking, one
can say that the first Keplerian law accomplishes the fit of the
bundle perpendicular to the direction of the orbital curve and
the second law along the orbit curve. Kepler’s third law cannot
be made use of because in the first place the orbital period of
the observed satellite is not known. Moreover, the balloon
satellite withits typically unfavorable mass-surface ratio is ex-
posed to disturbing influences such as residual atmospheric
pressure and the sun’s radiation pressure, so that the orbital
period could yield only limited information in a geometric
sense. All computational schemes must furthermore take into
account the fact that the recorded times for satellite imagery
refer to the instants of exposure and these data must therefore
be corrected for light travel time and geometrically for earth
rotation during this light travel time before they can be
processed further with the application of the principles of
celestial mechanics.

The practical application of orbital determination by means
of bundle fitting is faced with two further obstacles. In order to
obtain the required accuracy in the final result a large number
of satellite images is needed in the adjustment to reduce
sufficiently the scintillation effect. In the world net the number
of images averages 300 per plate. Since the corresponding 300
directions are derived from one and the same group of inter-
polation parameters, they are correlated, which means that for
each of the satellite direction bundles to be introduced into the
fit a 600 X 600 completely filled covariance matrix must be
taken into consideration, If the event has been observed by
more than two stations, this leads very quickly to undesirably
large demands on the memory capacity of the computer. Even
more decisive is the fact that the scintillation effect depends on
the meteorological conditions during the event, which can be
quite different at the contributing stations. To prevent this
‘noise’ from being averaged between the contributing stations
to an event in the triangulation adjustment, the appropriate
weight matrices for the individual direction bundles must be
computed by using the mean scintillation characteristic for
each station. This quantity is, however, in the evaluation
method under discussion not yet available.

As an alternative to the bundle-fitting concept one could
also fix the satellite orbital curve by smoothing the spatial
coordinates of the triangulated satellite points with
polynomials as functions of time [Wolf, 1967]. Such a solution
assumes that the orbital curve is designated by a series of
short-duration flashes emitted from the satellite, the time se-
quence of the flashes being sufficiently well known. Only then
will there be recorded images on the individual plates that lead
to the triangulation of the corresponding orbital points. On
the other hand, if, as is necessary for practical reasons at this
time, the satellite images are produced on the various plates by
chopping the trail of the continuously illuminated satellite
with a rotating disk shutter into separate points, then one
would first have to compute the necessary light travel times
iteratively with approximated satellite positions. In principle
this procedure would give sufficient information to interpolate
on each photogram the event image points satisfying the
geometric condition of simultaneity. From an error theoretical
standpoint, however, such interpolation is open to question
for the very reason that the position of the individual images is
influenced to different and unknown extent by scintillation.
From the computational standpoint, still another disadvan-
tage accrues to this solution in that all the satellite directions
on the selected plates are correlated, this situation leading to
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variance-covariance matrices the consideration of which
would require an intolerable amount of memory space. The
theoretical and practical difficulties of the above method of
solution are circumvented by modifying the approach and
evaluating each plate independently to the greatest extent
possible.

This concept is valid also from the standpoint of error
theory and is based on the fact that the measurements at a
given observing station, i.e., the photogrammetric registration
of the star images and satellite orbit together with the relévant
recordings of time, are self-sufficient in the sense that the infor-
mation so obtained is completely independent of and not in-
fluenced by the faet that similar operations have been carried
out at other stations. Transforming these measuring data into
time-correlated satellite directions requires only the addi-
tional assumption that the satellite orbital curve is by nature
continuous.

With knowledge of the geometric-dynamic properties of the
photographed portion of the satellite orbit as described above,
it should be possible to postulate the form of this trail on the
photogram in direction of the trail and at right angles to it in
terms of the central perspective laws, light propagation time,
and the aberration due to the earth’s rotation. The formaliza-
tion would lead to an infinite series expansion in which higher-
order terms could be neglected. An adjustment to this
theoretical model of the orbital projection could then be made
by fitting the satellite images to it. Another possibility, and the
one adopted here, is to smooth the satellite images with
polynomials. Just as the triangulated spatial coordinates of
discrete orbital points can be fitted to polynomial functions of
time, the recorded sequence of time-related satellite images can
similarly be smoothed, the result being the positions of the
satellite on the photogram as a function of time. A curve fit is
justifiable all the more from the standpoint of error theory in-
asmuch as the simplest conceivable projection model exists
between the orbit, continuous by nature, and the corre-
sponding satellite image sequence. The measured satellite im-
age coordinates, by means of the bundle reconstruction
parameters, as obtained from an adjustment based on
reference stars and their images, are therefore first of all
reduced to the concept of a rigorous central perspective, i.c.,
the concept of an ideal photograph. Then one applies the prin-
ciple of least squares to compute best-fitting polynomials. To
the extent that the central perspective nature of the images of
the satellite orbital points has been reproduced, this adjust-
ment has the function of neutralizing the random errors of the
comparator measurements, random emulsion shrinkage, and
scintillation effects. In addition, it yields in the form of
statistical functions an indication of the accuracy of the
smoothing polynomials.

In order to verify the required degree for these polynomials,
380 satellite space coordinates for a simulated Pageos orbit at
intervals of 0.8 s were recorded, which corresponds to the
average length of the Pageos arc observed with the BC-4
camera. The satellite orbit was integrated with a tenth-order
Cowell-Stdrmer process. The earth’s gravity field was in-
troduced by means of an expansion in spherical functions to
the fourth degree and fourth order by using the coefficients of
the Smithsonian Institution standard earth [Lundquist and
Veis, 1966]. Radiation pressure of the sun and attraction of the
moon and sun were also included in the integration computa-
tions. The resulting coordinates of satellite positions were then
transformed into a geostationary system.

Six fictitious observing stations (Figure 3) were distributed
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Fig. 3. Schematic representation of the portion of the satellite orbit
observed and the typical location of observing stations.

in relation to the computed orbit to simulate essentially the
geometric distribution of stations in practice. By applying the
time of light propagation for each of the 380 fictitious points of
the orbit, corresponding plate coordinates were computed at
each of the six stations to reproduce an exact central perspec-
tive mapping of the orbital geometry. These plate coordinates
were then subjected to polynomial curve fits from the first to
the eleventh degree in sequence. The resulting mean errors of
the computed coordinates after adjustment are listed in Table
1, o, referring to the coordinate component in direction of the
trail and o, to the component at right angles to the trail.

From Table 1 it is seen that the required accuracy can be ob-
tained with a polynomial of the fifth degree along the trail and
of the fourth degree across the trail. At the same time, no un-
desirable effect of ‘oversmoothing’ is apparent with
polynomials of higher degree, at least up to the eleventh. This
degree is of consequence in that from an adjustment
polynomial of the nth degree, only n + 1 computed values can
be used; otherwise, the corresponding covariance matrix
becomes singular, whereas the use of fewer values does not ex-
haust the available information content completely.

In processing the world net, polynomials of the sixth degree
are used in smoothing both x and y, so that seven fictitious
directions can be used in the final triangulation provided that
the trace of the portion of the satellite orbit common with
other stations extends over the whole plate. Thus the
polynomials provide the adjusted location of the satellite trace
as a function of the recorded time. This relation is very useful,
since it simplifies the application of the influence of time cor-
rections such as clock differences and light propagation. It is
merely necessary, after having transformed a selected satellite
orbital time to a corresponding time of registration on the
plate, to compute from the relevant polynomial x and y coor-
dinates for the corresponding fictitious plate image with this lat-
ter time. By using this procedure on all photograms that have
observed a common event a fictitious image is obtained on
each photogram satisfying the geometric condition of
simultaneity. An approximate preliminary triangulation of the
relevant orbital points will be needed to determine for each
registered orbital image the variable propagation time of light.
It should be noted in this connection that an error of 3 km in
the approximated distance will create an error of only 10 ps in
the time. Along with the coefficients of the curve fit
polynomials one obtains the mean dispersion of the individual
images and hence the variance-covariance of the polynomial
parameters. Since the fictitious satellite image positions cor-
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responding to specified times are computed as functions of the
polynomial parameters, the corresponding error propagation
computation will produce their variance-covariance matrix,
which displays rigorously the correlations among the in-
dividual satellite images resulting from the polynomial
smoothing. If seven such fictitious satellite images are used, as,
for example, in the world net, a 14 X 14 covariance matrix for
these points must also be computed.

At this stage the following evaluation data are available for
each satellite orbit observation at a station: (1) the 20 bundle
parameters describing the interpolation model, including the
exterior elements of orientation, and the associated covariance
matrix (in this case, of dimensions 20 X 20) scaled to an a priori
introduced error of unit weight; and (2) the pairs of coordinates
for the selected fictitious satellite images (in the present case,
seven pairs) together with their 14 X 14 covariance matrix,
also referred to the error of unit weight mentioned in (1).

The last processing step, computing the three-dimensional
geometry of the observing stations, amounts basically to deter-
mining the spatial directions corresponding to the fictitious
satellite images in order to triangulate the satellite orbit points
and all the observation sites by means of an adjustment, sub-
ject to the condition that the sum of squares of weighted cor-
rections to the fictitious satellite image coordinates be a
minimum. The weight matrices of the satellite direction
bundles are compounded at each station by the joint influence

.of the covariances of the relevant interpolation parameters

TABLE 1. Curve Fit of 380 Fictitious Satellite Images
With Polynomials of Degree 1-11

Observation Degree of Omps Oy
Station Polynomial um um

1 1 404,166 215,720

2 53,445 1,853

.3 1,267 289

4 90 6

5 3 1

6 0 0

2 1 461,861 133,736

2 54,919 964

3 1,479 166

4 99 4

5 & 0

6 0 0

3 1 226,233 169,385

2 50,510 229

3 709 204

4 76 2

5 2 0

6 0 0

4 1 494,437 57,121

2 53,362 209

3 1,571 39

4 99 0

5 4 0

6 0 0

5 1 , 356,618 82,163

2 51,751 223

3 1,116 77

4 85 1

5 3 0

6 0 0

6 1 145,585 157,387

2 48,951 476

3 458 184

4 70 0

5 1 0

6 0 0

Parameter x is in direction of the trail; y is normal to
it. For polynomials of seventh to eleventh degree, all € -
tries are zero, as they are for the sixth degree.
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(point I above) and the covariances of the plate coordinates of
the fictitious satellite images (cf. point 2 above).

Whenever additional a priori given information relative to
the geometry of the observing sites, such as spatial distance
between them (as for scale determination), position coupling
between adjacent stations (eccentric reductions), or the like, is
used as input data, such data can be introduced into the ad-
justment without difficulty after the computation of the
necessary functional weights, referred of course to the a priori
selected error of unit weight. This is true also for the case
where additional geometric data will become available
through, for example, laser distance measurement between
satellite and station.

In the world net, such scalars will be introduced in the form
of measured distances of edges of the world net polyhedron in
primarily the United States, Europe, Africa, and Australia, as
shown in Figure 4.

These basic ideas underlying the error budget of geometric
satellite triangulation are presented here in explanation of the
error theoretical considerations that lead to the applied adjust-
ment algorithm. Moreover, by pointing out computational
possibilities differing from the present solution and leading
eventually to completely rigorous adjustment and error
propagation, it is hoped that impetus will be given to perfect-
ing the developing method of geometric satellite triangulation.
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In the next section some results on the accuracies in the
various evaluation phases obtained in the processing ol the
observational data for the world net will be reported.

ERROR THEORETICAL CONSIDERATIONS AND
ANALYSIS OF THE RESULTS

Analysis of the Essential Sources of Error and the Error
Propagation Into the Spatial Triangulation

In the preceding section it was shown that in essence the
method of geometric satellite triangulation is subject to five
random error sources. The accidental errors from these
sources arise in connection with (1) the comparator
measurements of star and satellite images, (2) the reference
data from the star catalogs, (3) the designated times of the star
and satellite recordings, (4) atmospheric scintillation affecting
the directions to the recorded star and satellite orbit points,
and (5) accidental emulsion shifts generated in the process of
developing the plate.

This idealized situation will, however, only exist to the
degree to which during the field observations and in the data
processing, sufficient precautions are exercised either to model
the following systematical error sources or to eliminate them
by corresponding operational procedures.
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Fig. 4. Scalars connecting observing stations actually measured in the world net program.
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A. Observational phase

1. Elimination of possible static instability of the camera
. during the average half-hour period of observation

-2. Elimination of systematic errors in recording the instant
of shutter operation that is needed to within a few milliseconds
of universal time and relative to all involved cameras to within
1/10 ms
B. Measurement phase

1. Strict adherence to the Abbe comparator principle

2. Correction for the lack of perpendicularity of the com-
parator axes

3. Accounting for at least linear differences in the com-
parator scales
C. Adjustment phase

1. Deternlination of the elements of interior orientation
existing in the operational environment

2. Determination of the comparator constants outlined in
error sources 2 and 3 of the measurement phase

3. Modelitig of astronomic and parallactic refraction, the
latter because of the finite distance of the satellite

4.  Modeling the phase angle of the satellite illumination as
a function of size and shape of the satellite, its reflective
property, and the geometric positions of the sun, satellite, and
observing station during the event

5. Considering influence of light travel time on station syn-
chronization and aberration

6. Introducing with sufficient accuracy the spatial orienta-
tion of the instantaneous rotation axis of the earth (pole
wandering) with respect to individual camera orientations as
well as with respect to the use of UT1 (true angle of earth’s
rotation)

7. Reduction of star places to time of observation, in-
volving precession, nutation, proper motion, radial velocity,
and annual and diurnal aberration as well as the influence of
the spectral characteristics and magnitude of the star on the
photogrammetric imagery.

Quantitative results will now be given with respect to the
above mentioned random errors and their propagation into
the end results of the spatial satellite triangulation, errors in
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time determination, as previously mentioned, being considered
negligible.

Accuracy of the comparator measurements. We discuss first
of all the result of measuring 1210 photograms, representing
practically half of the observational data from the world net.
On each photogram, on the average, 100 fixed stars were
recorded before and after the satellite transit and also during
the event. With repeated exposure, 500-800 star images in all
are thus registered. There are in addition about 300 satellite
images, so that on each photogram at least 800 images must be
measured. In order to complete these measurements in the time
aloted to the world net program, six comparators of similar
design were in operation. Of significance also is the fact that a
group of operators is involved in the measurements. Each
photogram is measured on the comparator in two positions
differing by approximately 180°. By means of a two-
compoﬁent translation, two scale factors and a rotation, the
two sets of measurements are brought into coincidence by an
adjustment. The internal accuracy of the measuring process
(precision of the comparator measurements) can then be
judged on the basis of residual differences from double
measurements. From the selected photograms with their
1,291,744 double measurements there resulted a mean error for
the arithmetic mean of a double measurement of +1.63 um.
No significant differences between the precisions of the x and y
coordinates were detected.

It is of interest to group the measurement of plates by in-
dividual operators. The separately computed average measur-
ing accuracy for each of the 34 comparator operators,
arranged in sequence of increasing absolute amounts, is shown
in Figure 5. The number at the top of each arrow represents
the number of photograms measured by the operator, and the
ordinates of the arrow heads indicate the range over which the
mean errors of the individual plate measurements vary for that
operator. .

It can be seen that the mean measuring precision- attained
ranges from 1.1 um (for operator 38) to +2.2 um (for operator
4). The best single result was +0.76 um by operator 38, and the
worst was +2.66 um by operator 20. As an explanation of these
fairly surprising differences one must assume chiefly the vary-

3.0+ Number of Plates Measured
22 76 33 75 18 65 15 6 91 98 30 48 16 27 95 15 83 60 15 10 31 6 36 9 13 38 16 12 20 34 39 10 12 32

2.5+
2.0+
1.5
um
1.0
051
38 6 18 16 12 24 4235 13 26 37 7 10 30 32 41 34 20 19 28 9 8 15 22 43 36 3 27 1740 14 2 31 4
. Identification Number of Comparator Operator
20 Performance of Operator Number 6
1.5 )
pm
1.0
0.5
0w 1966 | 1957 | 1968
1 10 20 30 40 50 60 10 78

Number of Plates

Fig. 5.

Comparison of the measuring accuracies attained by a group of comparator operators and the individual per-

formance ol one.
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Fig. 6. Histogram of 1,291,744 double measurement differences.

ing capabilities of the operators but also the influence of en-
vironmental conditions in image quality. The lower diagram in
Figure 5 shows for operator 6 in chronological order the mean
error of the 78 photograms measured by him over a period of
18 months. Although the average mean error of this operator
of £1.37 um is relatively low, the dispersion is typical for the
behavior of all operators with respect to the quality of their in-
dividual measuring results. In addition to displaying the varia-
tion in precision from plate to plate the diagram indicates a
steady though small improvement in the measuring operation.

Figure 6 shows the histogram of the 1,291,744 double
measurements. From the similarity of the histogram with the
superimposed theoretical normal distribution one can con-
clude a sufficiently close absence of bias errors, all the more so
if one takes into consideration the fact that the data for the
histogram are composed of samples with differing mean
errors. On the basis of these results one can well imagine that
these measurements were all made by one fictitious operator
on one fictitious comparator instead of by 34 operators on six
comparators. Hence for the further error theoretical studies we
shall assume that the internal accuracy of image coordinates,
determined as the mean from double measurement, is
sufficiently well expressed in their totality by a mean error of
+1.63 um. The mean errors m,, computed separately for each
photogram, are plotted in Figure 7 for 500 photograms
selected for further study. The observational data selected are
derived from 35 stations of the world net plotted according to
latitude.

Accuracy of the reconstructions of the photogrammetric
bundles and their orientations. The parameters for reconstruct-
ing the bundle and its orientation are obtained by relating the
measured star image coordinates to the corresponding star
catalog data with an adjustment to a mathematical model.
The total of these quantities, previously designated as inter-
polation parameters, includes in addition to the purely
photogrammetric parameters a second scale factor and an
angle to correct for the a priori assumed perpendicularity of
the comparator spindles. The introduction of these extra
parameters is justified insofar as one may assume that the
homogeneity of the scale of the astronomic reference system
(unit sphere) and the orthogonality of its coordinates are
superior with respect to systematic errors to the corresponding

ScHMID: WORLDWIDE GEOMETRIC SATELLITE TRIANGULATION

mechanical components of the comparators. After the linear
scale difference between the x and y spindles (periodic screw
errors are independently tested for in comparator calibrations)
and the deviation from perpendicularity have been determined
in this manner, the mean error of £1.63 um computed as a
measure of precision for the image coordinates can be con-
sidered to be a measure of accuracy for the subsequent treat-
ment. If we assume that the mean error is +0.3" for the
astronomic coordinates «, 6 of FK-4 stars reduced to the
observation datum and +0.4” for all other stars and that the
mathematical model for simulation of the bundle is sufficient,
then since time errors are negligible, the mean error of coor-
dinate corrections resulting from an adjustment executed with
appropriate weights will express the additive influence of the
random errors produced by the comparator measurement,
scintillation, and emulsion shift. In Figure 7 are listed for the
500 selected photograms the values for m, and m, and the rms
for all the data, m, being the mean error of the image coor-
dinates for the photogram as obtained from the adjustment for
the photogrammetric bundle reconstruction and m; being the
expression for the accuracy of the corresponding comparator
measurements. A mean error of =1.0 um is assumed for the in-
fluence of random emulsion shift [4/tman and Ball, 1961].
Hence the contribution to the total mean error m,, by the scin-
tillation is

my = £(my = m? = 10" (1)
This error component is also listed in Figure 7. The rms values
for the 500 plates are

ms = £2.58 um

my, = £3.31 pm m; = £1.81 um

Figure 8 shows the histogram of combined x and y coor-
dinate corrections with corresponding normal distribution
curves for five single-camera adjustments. These were selected
to cover uniformly the range of mean coordinate errors after
adjustment actually obtained. The histograms illustrate the
typical behavior of the totality of evaluated observational
data,

Accuracy of the truce of the satellite orbit after the polynomial
fit. The mean deviation of a measured satellite point from the
smoothing polynomial of degree 6 varies between +1.6 um and
£8.6 um with an rms of £3.75 um for the fit in direction of the
satellite trail and between 1.3 um and +£9.3 um with an rms
of +3.28 um perpendicular to the trail (cf. Figure 9). The cor-
responding x, y mean value is £3.52 um.

The individual mean displacement is a measure of how weli
the satellite images on a given photogram fit the polynomial.
These quantities are the sums of the superimposed random
errors of the comparator measurements, the emulsion shifts,
and again the scintillation. The mean deviation in direction of
the satellite trail is on the average 0.47 um larger than that at
right angles to the trail. This is not so much due to random
time errors of the recording sequence that operate in the direc-
tion of the trail as it is to the fact that the comparator
measurements of the trail images have a larger mean error in
this direction than in the directiod perpendicular to the trail
because of image blur from the satellite motion.

About 300 satellite image measurements are available per
plate. From the double measurements and their differences the
accuracy of the comparator measurements is again deter-
mined. This is on the average +1.79 pm for the x and y
measurements, or practically the same value as for the star im-
age measurements. Again, with the assumption of +1.0 um for
the mean random emulsion shift the opportunity is given to
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parator measurements, respectively.

isolate the scintillation effect as

= (3.522 — 1.79* — 1.0®"? = +2.86 um )

The treatment of the scintillation as a random source of
error is based on the fact known from astronomical obser-
vations [Hynek, 1960] that the mean amplitude of scintillation
operates as an irregular error source in all directions. By com-
puting for each plate the scintillation effect on the star images
in accordance with (1) and comparing these values with the
corresponding similar values obtained from the curve fit with
(2), the correlation coefficient p = 0.81 £ 0.02 is obtained with
the formula

n=500

Z As, - As,

1=1

p = =500 1/2| n=500
EuTTE

]12
1=1 t=1

3)

where the A represent deviations of the individual amounts of
scintillation from their mean value and the indices 1 and 2
refer, respectively, to the scintillation computed from the bun-
dle reconstructions and from the polynomial fit.

In Figure 10 is shown the mean scintillation at each observ-
ing station, the stations being arranged by latitude. From this
it is seen that scintillation, with an overall mean for all stations
of £2.58 um for the star images and +2.86 um for satellite im-
ages, represents a considerable error contribution to the total
error budget. Also apparent is the increase in scintillation with
increasing latitude, which is to be expected in consequence of
the theory presented by Nettelblad [1953], according to which
scintillation is least in warm ocean air masses and greatest in
cold continental climates. The amplitude of the scintillation
depends, in addition, on the exposure time, which may be the
cause for the fact that the mean scintillation for the star ex-
posures of between 0.2 and 3.2 s is £2.58 um and for the

Fig. 8.

FANANDANANFAN

Histograms of x and y plate residuals for five typical single-camera adjustments, with mean coordinate errors in
micrometers.
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satellite images exposed from 1/15 to 1/30 s is +2.86 um. Ob-
viously, the use of short-duration flashes (1/1000 s) will in-
crease the scintillation effect for the individual flash, this effect
thus making it all the more desirable to have a considerable
number of such flashes before an adequately accurate
triangulation can be performed.

Error propagation into the spatial triangulation. 1n the three

preceding sections on accuracy, quantitative results have been
given for the significant random error contributions that must
be considered in setting up an error budget for spatial
triangulation. In Table 2, average values from the processing
of the selected 500 photograms are presented.

The figure in column 7 of Table 2 indicates that an average
uncertainty of 1.57"" in direction should be associated with a
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Fig. 10. Average scintillation at a number of observing stations arranged according to latitude, showing a corresponding
trend curve.
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bundle reconstruction that is not overdetermined. Actually,
this value is a function of the position of a ray within this bun-
dle [Schmid, 1967] and to be completely rigorous, in accord-
ance with error theory, should be computed with the
covariance matrix obtained from the individual bundle
reconstruction adjustment. However, since the bundles under g :
consideration here are relatively narrow (the angle of vision
for the BC-4 camera is about 20°), we can for the present ig-
nore this fact in a general examination of the error propaga-
tion. In order to determine uniquely the 20 required interpola-
tion parameters of an oriented bundle reconstruction, at least
10 reference stars are required, so that the use of an average ol
100 stars per plate represents 10 solutions in the adjustment,
Each star being measured on the average S timces, {from a com-
bination of tabulated values in Table 2 it can be expected that
the direction uncertainty for a central ray after adjustment of
the bundle reconstruction will be as follows:

The error sources affecting the individual image coordinates
add quadratically to

sec
*1.61
0.67

Mean Error'
(8)
4,11

+3.52
+1.46
+8.96

sec

*1.57
+0.88
13,22

(7§

Total Noise

um
+3.47
1.92

sec

+0.40
+0.40
10.40

m, = £(1.812 + 1.0° + 2.58%)'* = £3.31 um

Error, t
(6)
The observation material consisted of 500 selected photograms

(cf. Table 2, columns 2, 3, 4, and 5). If we assume that the five
images for each reference star combine into one fictitious im-
age, then the coordinates will have an accuracy of 3.31/(5)* =
+1.48 um. When it is combined with the mean star catalog un-
certainty of £0.4"” = +0.87 um (column 6), we have a mean
uncertainty in the direction of £1.72 um = £0.79". The com-
bination of 10 independent solutions in one adjustment
reduces this error approximately to 0.79"/(10)"% = 0.25".

The figures of Table 3 are results from a bundle reconstruc-
tion adjustment with a mean error of £3.31 um for the image
coordinates after adjustment involving 648 star images of 105
reference stars distributed approximately evenly over the plate.
The results shown are mean accuracies of directions cor-
responding to various image positions on the plate assumed to
be free of error.

The mean error £0.23" from this table for the central ray (x
=y = 0) is in good agreement with the value 0.25" obtained
before from general considerations. With the use of the mean
satellite image error figure of 1.61"" from Table 2, column 8,
the sixth-degree polynomial fit over 300 satellite points will
contribute an uncertainty in direction after adjustment of
+1.61""/(300/7)2 = 0.25". The error sources being un-
correlated, the total expected error in direction for the central
ray is [(0.25")? + (0.25")*]*/* = +0.35".

The use of sixth-degree polynomials makes seven directions
available for satellite triangulation in each photographed bun-
dle. However, as we know, these are mutually correlated. One
reason is that they are all obtained with a specific group of in-
terpolation parameters from one single camera, and for
another they all derive from a single pair of smoothing
polynomials. From a study of the relevant covariance matrices
in a rigorous adjustment whose reproduction here would far
exceed the available space, it becomes apparent that the use of
seven directions distributed evenly over the satellite trail yields a -
gain of 32% for the geometry of the bundles as opposed to the
use of a single central direction. This means that the use of all
seven directions has about the same information content that
would be obtained from two central rays that are not cor-
related.

Hence if we conceive of the total information used in the
evaluation of a specific photogram as being compressed to |
determine a central fictitious direction, we may expect for such a

Introduced Mean

m
+0.87
+0.87
+0.87

)
+3.31
+1.88
+6.87

Mean
Coordinate
Error,* um

sec
*1.18
+1.31
10.46
+0.47
+2.96
+3.14

Mean
2]1/2mz_

Average of
Scintillation
(4)

um

*+2.58
+2.86
+1.01
+1.07

Average Values From the Processing of 500 Selected Photograms
*6.46
16 .84

450 mm, and aperture was 132 mm. The target was Pageos balloon satellite for 496 photograms and Echo satellite

TABLE 2,

Irregular

Emulsion

Shift, um

(3)

+1.00
+1.00
+1.00
£1.00
+1.00
*+1.00

Assumed
Mean of
ent [(2)2 + (3)2 + (4)2 + (6)2]1/2,

24 (3)2 + W21/2,

Mean Errors
of Comparator
mys um
(2).
+1.81
+1.79
+0.97
+0.87
*+2.45
+2.68

Measurements
The program was world net. The period of observation was October 1966 to September 1969.

Type of
Imagery
1)
satellite

stars
satellite
stars
satellite

stars
ponding time recordings from 35 stations in the world net,

After adjustment in photogrammetric bundle simulation [(2)2 + (3)2 + (4)

Of reduced star catalog data.
photogrammetric bundle simulation adjustm

polynomial smoothing [(2)

values
Minimal
In
Tofr

Photogrammetric camera was Wild BC-4, lens was Cosmotar f
*
+
§

for four photograms.

values
Maximal

values
with corres

Average
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bundle reconstruction that is not overdetermined. Actually,
this value is a function of the position of a ray within this bun-
dle [Schmid, 1967] and to be completely rigorous, in accord-
ance with error theory, should be computed with the
covariance matrix obtained from the individual bundle
reconstruction adjustment. However, since the bundles under
consideration here are relatively narrow (the angle of vision
for the BC-4 camera is about 20°), we can for the present ig-
nore this fact in a general examination of the error propaga-
tion. In order to determine uniquely the 20 required interpola-
tion parameters of an oriented bundle reconstruction, at least
10 reference stars are required, so that the use of an average ol
100 stars per plate represents 10 solutions in the adjustment,
Each star being measured on the average S timces, {from a com-
bination of tabulated values in Table 2 it can be expected that
the direction uncertainty for a central ray after adjustment of
the bundle reconstruction will be as follows:

The error sources affecting the individual image coordinates
add quadratically to

m, = £(1.812 + 1.0° + 2.58%)'* = £3.31 um

(cf. Table 2, columns 2, 3, 4, and 5). If we assume that the five
images for each reference star combine into one fictitious im-
age, then the coordinates will have an accuracy of 3.31/(5)* =
+1.48 um. When it is combined with the mean star catalog un-
certainty of £0.4"” = +0.87 um (column 6), we have a mean
uncertainty in the direction of £1.72 um = £0.79". The com-
bination of 10 independent solutions in one adjustment
reduces this error approximately to 0.79"/(10)"% = 0.25".

The figures of Table 3 are results from a bundle reconstruc-
tion adjustment with a mean error of £3.31 um for the image
coordinates after adjustment involving 648 star images of 105
reference stars distributed approximately evenly over the plate.
The results shown are mean accuracies of directions cor-
responding to various image positions on the plate assumed to
be free of error.

The mean error £0.23" from this table for the central ray (x
=y = 0) is in good agreement with the value 0.25" obtained
before from general considerations. With the use of the mean
satellite image error figure of 1.61"" from Table 2, column 8,
the sixth-degree polynomial fit over 300 satellite points will
contribute an uncertainty in direction after adjustment of
+1.61""/(300/7)2 = 0.25". The error sources being un-
correlated, the total expected error in direction for the central
ray is [(0.25")? + (0.25")*]*/* = +0.35".

The use of sixth-degree polynomials makes seven directions
available for satellite triangulation in each photographed bun-
dle. However, as we know, these are mutually correlated. One
reason is that they are all obtained with a specific group of in-
terpolation parameters from one single camera, and for
another they all derive from a single pair of smoothing
polynomials. From a study of the relevant covariance matrices
in a rigorous adjustment whose reproduction here would far
exceed the available space, it becomes apparent that the use of

seven directions distributed evenly over the satellite trail yields a -

gain of 32% for the geometry of the bundles as opposed to the
use of a single central direction. This means that the use of all
seven directions has about the same information content that
would be obtained from two central rays that are not cor-
related.

Hence if we conceive of the total information used in the
evaluation of a specific photogram as being compressed to
determine a central fictitious direction, we may expect for such a

Average Values From the Processing of 500 Selected Photograms

TABLE 2,
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Mean of
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Average of

Introduced Mean

Mean
Scintillation
(4)

Mean Errors
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Measurements

Mean Errorl
(7)5 (8)
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Error, T
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sec

s€C um sec

m

Error,* um
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sec
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(3)
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mys um

Imagery
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*1.57

¢
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£1.18
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+2.68

stars

Average
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+1.88

satellite
stars

values
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0.67

+0.88

1.9

b4

+0.87

*1.46

satellite
stars

values
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4,11

13.22

£7.02

10.40

*0.87

16.87

*8.96

satellite

values

450 mm, and aperture was 132 mm. The target was Pageos balloon satellite for 496 photograms and Echo satellite

Photogrammetric camera was Wild BC-4, lens was Cosmotar f
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The observation material consisted of 500 selected photograms

2]1/2mz_

The program was world net. The period of observation was October 1966 to September 1969.

ponding time recordings from 35 stations in the world net,

After adjustment in photogrammetric bundle simulation [(2)2 + (3)2 + (4)

Of reduced star catalog data.
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TABLE 3. Mean Accuracies of Directions
Image coordinates
x/y, mm 0/0 10/10 20/20 30/30 40/40 50/50 60/60 70/70
Mean accuracy of +0.23"  £0.25"  x0.19" +0.21"  #0.21''  #0.25"  *0,44" £2.77%

direction

direction an accuracy of m, = 0.35" — 32%(£0.35'") =
0.24",

According to the section on the method of geometric
satellite triangulation the adjustment algorithm is based on the
assumption that the results of bundle reconstructions at the in-
dividual stations are uncorrelated. Consequently, the direc-
tions to the satellite for a given event derived at the individual
stations are likewise uncorrelated. To obtain a measure of the
mean accuracy to be expected for the spatial triangulation of
the observing sites, one can therefore assume that the mean ac-
curacy 0.24” of a direction computed above for a fictitious
central direction containing all the information content is an
uncorrelated function of the station. In the adjustment
algorithm this accuracy of triangulation directions associated
with a specific evaluation of a photogram is expressed in the
form of the weight matrix associated with the coordinates of
the seven fictitious satellite images, the weight matrix being
computed from the corresponding covariance matrix. In the
section on the method of geometric satellite triangulation it was
mentioned that in the mathematical formulation to be set up
for the final triangulation, only the satellite and station
positions were to be determined as unknowns. From the basic
triangulation geometry it is then obvious that the accuracy of
the triangulation results to be expected in a direction perpen-
dicular to the station-satellite direction is proportional both
to the directional accuracy and the distance between the sta-
tion and.the satellite. This is indicated schematically and
reduced to two dimensions in Figure 11.

The accuracy in direction of the z coordinate is obviously a
function of the angle v in which the station-satellite planes in-
tersect. From analysis of the inverted normal equation
systems, which contain the geometry of the actual satellite
observations, it follows quite generally that the mean error of
the triangulated station in direction of the geodetic latitude
and longitude is, if the scale is errorless, proportional to the
product mp, - d, where my, is the mean error of direction and d
the mean station-satellite distance; on the other hand, the
average mean error in the direction of height is 3 times as large
[Schmid, 1967]. These relations are shown in Figure 12, in

z

Satelhite

Sotellite

\\ Average Direction

d-017 !
Accuracy =017

(1n radions)

Fig. 11. Section of error ellipsoid at observation station intersected

from two satellite positions.

which Q2 is the error propagation factor (sometimes called
the weight reciprocal) for the position coordinate.

The same result is shown schematically in another form in
Figure 13, from which by comparison of antipodal stations it
is apparent that the uncertainty in height determination within
a world triangulation eventually has the effect of an uncertainty
in scale. One can expect therefore that additional scale con-
trol will have particularly favorable influence on the accuracy
of height coordinates but will represent no real gain for the
determination of the position coordinates ¢, A. This fact is il-
lustrated in Figure 12, showing the effect of from one to four
scale determinations. The lower part of Figure 12 shows that
even under the assumption of errorless scalars (weight 10%),
only the stations directly involved in the scale determinations
show a gain in the determination of their latitude ¢ and
longitude A. On the other hand, the error propagation
coefficient for the height determination reduces from 3 to 1.8
with the use of four scalars even when a more realistic weight
of 1 is used in the scale determination [Schmid, 1967; Rinner,
1966].

In the world net the Pageos satellite was observed almost ex-
clusively. Its nominal circular orbit elevated about 4600 km
above the surface of the earth resulted in an average station-
satellite distance of 6000 km. With a mean direction accuracy
of 0.24"" and the propagation factors of Figure 12 a triangula-
tion solution based on two satellite transits or events per
triangle side, if the scale is errorless, produces position coor-
dinates for the observing stations with mean errors m, = my =
+7.0m and my = £21.0 m. At this time, 2350 plates have been
reduced for evaluation in the world net. These observations
correspond to about five independent solutions. An adjust-
ment of all these events should therefore yield an accuracy of
m, = my = £7.0/(5)"* = £3.1 m and my = £21.0/(5)'* =
+9.4 m. With the introduction of the planned four scalars,
measured independently and with an accuracy of at least
1:1,000,000, the expected mean error in height reduces to
my = £3.1 m X 1.8 = £5.6 m (cf. Figure 12), and the mean
position error of a station

2 2
m, + mxz + my
3

or M is roughly 1:1,500,000 of the mean station-satellite dis-
tance.

In the following paragraphs the result of the worldwide
geometric satellite triangulation program is presented with an
associated error analysis based on the statistical information
obtained during the final triangulation adjustment.

172
M= :|:( ) = +41m (4)

Result of the Worldwide Geometric Satellite Triangulation

The quantitated result of the worldwide geometric satellite
triangulation program consists of the three-dimensional
positions of 45 stations. Their locations can be seen from
Figure 14.

The corresponding Cartesian reference coordinate system
has one of its axes parallel to the rotation axis of the earth for a
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certain epoch (Conventional International Origin). The origin
of the system and the selection of the X direction are, for
reasons inherent to the method of geometric satellite triangula-
tion, arbitrary. They were fixed by enforcing for station 2,
Beltsville, United States, the following spatial coordinates,
which are approximation values for a mass-centered position.

X = 1130761.500 m
4830828.597 m

Z = 3994704.584 m
As is discussed in the analysis of the results in the next

Y
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Fig. 13. Error propagation of the method of geometric satellite

triangulation.
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Error propagation factors for ellipsoid height, latitude, and longitude using [rom one to lour scalars.

paragraph, it was decided to enforce all eight scalars with their
measured values.

Table 4 lists the three-dimensional Cartesian coordinates for
the 45 stations and their mean errors as obtained from the final
adjustment. (The XYZ system is a left-handed system (west
longitude positive). The complete covariance matrix for the
triangulated station coordinates, which for space reasons can-
not be presented here, is available.) The coordinates refer to
the projective center of the BC-4 cameras. The elevation of this
point above the permanent station mark is in each case
+1.5 m.

Analysis of the Triangulation Adjustment

The input of the triangulation adjustment refers to the infor-
mation obtained from the evaluation of 2350 photographic
plates. Specifically, the observations from 856 two-station, 194
three-station, and 14 four-station satellite events were used.
The 1064 satellite events chosen for evaluation required, in ad-
dition to the determination of the spatial positions of the
tracking stations, the triangulation of 6604 satellite positions.
The adjustment provided for 9162 degrees of freedom. Two
station-to-station couplings were introduced as additional
constraints in order to tie together the stations 111 and 134
(California) and 012 and 066 (Wake Island) where for
technical reasons, satellite observations were collected from
neighboring observation piers. Furthermore, eight scalars
were rigorously introduced. They represent the spatial distances
between the stations in Table 5.

In order to obtain a measure for the precision of the strictly
photogrammetric triangulation a first triangulation adjust-
ment was executed with only the scalar between stations 002
and 003 enforced. This adjustment produced a sum of the
squares of the weighted residuals in terms of plate coordinate
corrections [pov] = (3.064 + 0.045) X 1072 (m?).

A comparison of the measured base lines with the cor-
responding triangulation results provides a first insight into
the internal accuracy of the geometric world net. The
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Fig. 14. The 45 stations of the worldwide BC-4 photogrammetric satellite triangulation network with station number
designations.

TABLE 4, Three-Dimensional Cartesian Coordinates

Station No. and Name X, m Oy, m Y, m oy, m Z, m gz, M
1, Thule 546567.862 +2,297 1389990.609 +3.447 6180239.602 +3.960
2, Beltsville 1130761.500 0 4830828.597 0 3994704.584 0
3, Moses Lake -2127833.613 +0.790 3785861.054 *2.976 4656034.,740 +2.906
4, Shemya -3851782.861 +4,888 -396404.016 +5.654 5051347.586 *6.673
6, Tromso 2102925.118 *+3.663 ~721667.562 4,772 5958188.868 +4.748
7, Azores 4433636.070 4,737 2268143.467 *4,362 3971656.223 +4.945
8, Surinam 3623227.823 *4.563 5214231.698 *+4.502 601551.302 *5.716
9, Quito 1280815.597 +4,338 6250955.436 +5.800 -10793.013 +5.717

11, Maui -5466020,732 +5.045 2404435.198 *4,352 2242229.885 *4.703
12, Wake -5858543.398 +5.308 ~1394489.166 +5.281 2093807.584 *5.391
13, Kanoya -3565865.509 +5.200 -4120692.866 +6.694 3303428.249 *6.131
15, Mashhad 2604346.389 +3.988 -4444141.147 *5.513 3750323.381 +4.974
16, Catania 4896383.234 *4,080 -1316167.822 *4.,463 3856673.791 +4.698
19, Dolores 2280603.832 +4.190 4914545,588 *4.789 -3355412.286 +6.839
20, Easter -1888616.886 *4.845 5354892.780 +6.246 -2895739.444 7,217
22, Pago Pago -6099954.446 +5.392 997367.321 *+4.710 -1568567.088 +5,883
23, Thursday Isl. -4955371.694 4,671 -3842221.799 +5.689 ~-1163828.451 +5.852
31, Invercargill -4313815.856 +4,687 -891322,098 +5.238 -4597238.676 +6.398
32, Perth -2375397.874 +4.579 -4875524.035 *+5.746 -3345372.,936 $6.170
38, Revilla -2160983.561 +2.008 5642711.612 *+3.653 2035371.417 +4.062
39, Pitcairn ~3724766.403 *+6.502 4421236.249 *6.480 -2686072.609 +7.288
40, Cocos -741969.205 *+4.859 -6190770.789 16.606 -1338530.638 +5.843
42, Addis Ababa 4900734.926 *4.844 -3968226.427 +5.481 966347.675 +5.103
43, Sombrero 1371358.188 4,171 3614760.271 4,969 -5055928.396 +8.156
44, Heard 1098896.432 +6.448 -3684591.597 +7.801 -5071838.356 +9.919
45, Mauritius 3223422.870 4,472 -5045312.452 +6.019 -2191780.736 *+6.065
47, Zamboanga ~-3361946.845 *+4.909 -5365778.338 +6.501 763644,128 +6.121
50, Palmer 1192659.730 +5.174 2450995. 361 +7.275 ~5747040.896 *+10.171
51, Mawson 1111335.585 +5.189 -2169243.189 *+5.456 -5874307.692 +8.002
52, Wilkes -902598.435 4,912 -2409507.607 +5.700 -5816527.805 +7.901
53, McMurdo -1310841.759 4,993 -311248.105 +5.500 -6213251.231 +7.886
55, Ascension 6118325,238 +5.260 1571746 .070 *4,816 -878595.457 *5.507
59, Christmas -5885331.078 *5.213 2448376.867 *4.,435 221683,837 +5.446
60, Culgoora -4751637.577 4,552 -2792039.266 *+5.653 -3200142.319 15.866
61, S. Georgia 2999903.036 *4.896 2219368.228 *6.055 -5155246.454 +8.547
63, Dakar 5884457.561 +4.898 1853492.773 4,257 1612863.206 +5.072
64, Chad 6023375.533 *4.690 -1617924.383 4,242 1331742.422 4,834
65, Hohenpeissenberg 4213552.554 +3,730 -820823.968 *+4.444 4702787.513 *4.620
67, Natal 5186398.560 *+5.260 3653936.203 +4,854 -654277.651 +5.569
68, Johannesburg 5084812.984 *5,229 -2670319.559 +5.065 -2768065.639 +6.586
69, De Cunha 4978412.958 +8.167 1086867.619 +6.918 -3823159.761 19.443
72, Thailand -941692.348 +5.593 -5967416.884 +6.919 2039317.530 1+5.461
73, Chagos 1905130.320 4,345 -6032252.624 +6.702 -810711.562 +5.751
75, Mahé 3602810.169 4,910 -5238217.287 *+6.393 -515928.653 *5.650
111, Wrightwood -2448854.721 +2,088 4667988.213 *+3.367 3582758.969 *+3.185
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TABLE 5. Directly Measured Distance Constraints

Stations Between Spatial

Which Scalars Distances, ods

Were Measured m m
002-003 3,485,363.232 +3.53
003-111 1,425,876.452 +1.59
006-065 2,457,765.810 +0.80
065-016 1,194,793.601 +1.43
006-016* 3,545,871.454 +1.64
023-060 2,300,209.803 +0.88
032-060 3,163,623.866 +0.98
063-064 3,485,550.755 2,10

*The scalar 006-016 is not a truly independent scalar.

TABLE 6. Corrections to Base Lines in Adjustment
Scalar M,* m o of Scalar,* m
002-003 0 0 (held fixed)
003-111 -7.3 +2.8
006-065 -2.0§ 4.9
065-016 +9.3 £5.1
023-060 +5.8 3.9
032-060 +8.5 4.6
063-064 -5.1 15.2
Sum +9.16 £15.61%

*Ad equals measured distance minus computed distance.

+As obtained from the triangulation adjustment.

§The German Geodetic Research Institute gives for the base
line 006-065 a value that is 1.9 m larger than the one used
here. The corresponding A values would then be only 1 dm.

fo of zd.

TABLE 7. Corrections to Scalars

Correction

Assumed Mean From the

Scalar Error, m Adjustment, m
002-003 *1.75 -0.06
003-111 +0.72 +1.50
006-016 +1.78 -0.26
006-065 +1.23 0.10
016-065 *0.60 0.42
023-060 +1.15 -0.98
032-060 *+1.58 -2.76

063-064 +1.75 +2,60

differences between the computed and measured distances
with a complete constraint on scalar 002-003 are shown in
Table 6. The sum X_d of the lengths of the measured scalars is
17,513,184 m, so that

> Ad
> d

As can be seen from Table 6, the difference 2_Ad is only about
0.6 of the standard deviation associated with the sum of the
triangulated distances.

It was therefore concluded that the scalars, at least in their
totality, are probably of higher accuracy than the geometric
satellite triangulation itself, a conclusion that is further evi-
denced when the standard errors for these scalars computed
by the various computing centers are considered.

An adjustment in which all scale lines were enforced with
weights corresponding to an accuracy of 1 ppm of their respec-

= 1:1,911,920
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Fig. 15. Plot of the increments in A cos E from precalibration

to post calibration for a number of randomly selected events, in sec-
onds of arc. The three segments are portions of a single graph.
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Fig. 16. Plot of the increments in elevation from precalibration to
postcalibration for a number of randomly selected events, in seconds
of arc. The three segments are portions of a single graph.

tive lengths gave the following result, as shown in Table 7.

The [pvv] of this adjustment was 3.068 X 10-2, or a value
which is only 0.004 X 10-° units larger when it is compared
with the single scalar adjustment mentioned above. This
difference is only one tenth of the associated sigma. It can
therefore safely be concluded that the scalars do not exercise
undue constraint on the triangulation system.

If all eight scalars are rigorousty enforced, the [pvv] sum in-
creases to 3.071 X 10-%, a solution that is equally defensible
from a statistical standpoint.

The numerical solution is iterated on the CDC 6600 com-
puter (generally 3 times) until the maximum increment to the
triangulated coordinates becomes < mm. Multiplying the nor-
mal equation matrix pertaining to the final iteration by its cor-
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Differences in azimuth, in seconds of arc, between directions compuled as single-line adjustments and the cor-

responding figure from the final adjustment together with the 3¢ value ol the combined solution. The bottom ligure is a

histogram of these plotted values.

responding inverse matrix, one obtains as a check the expected
unit matrix to within a unit in the tenth decimal place.

The mean error of unit weight after adjustment for all these
solutions is 1.830 + 0.014 against the expectation of 1.0, in-
dicating the presence of additional unmodeled error sources. If
the increase in the overall error budget can be ascribed to ad-
ditional random error sources, then the effect is relatively
harmless, the result being only a corresponding increase in the
mean errors of the triangulated station positions. But if the
effect of systematic errors, which are distributed in the adjust-
ment in accordance with the least squares principle, is in-
volved, the situation is more serious.

To gain some insight into the stability of the camera during

the average half-hour period of operation, star photography
taken immediately before and after the satellite transit was ad-
justed, and sets of camera orientation parameters were com-
puted. Thus for each plate the change in azimuth A4 and in
elevation AE of the central ray with a corresponding rotation
component Ax was computed. The Ax are random and com-
pletely within the range of their mean errors. The A4 cos E
and especially the AE component, however, indicate the in-
fluence of a systematic error, as shown in Figures 15 and 16.
For an evaluation of the diagrams it should be added that the
individual A values shown have an average mean error of
+0.5". Since star imagery is also available for the satellite
transit period, it is possible to study these systematic changes

-5.

—3d0 15

Fig. 18.

15 30 454

The elevation differences ol the data in Figure 17.
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plotted in azimuth of the line.

in orientation over the period of observation. A roughly linear
trend with time is indicated.

To eliminate this source of error, orientation parameters
that were based solely on star images obtained during the
period of actual satellite transit were used in the final adjust-
ment wherever possible. Still we cannot entirely gscape the
conclusion that the instability of the camera creates an ad-
ditional error that, as the diagrams show, has a systematic
component and acts as a source of additional accidental
errors.

For a further analysis of the results it is important to realize
that in consequence of the interpolation of each event into the
astronomic system, absolute directions are obtained. This
means that it is possible to triangulate the direction of the
chord joining two adjacent stations in the net independently,
i.e., with only the satellite passes observed from these two
stations. Such computations were made for all 170 lines of the
world net. In these adjustments, as well as in the final solution,
all covariance matrices resulting from the individual process-
ing steps were included, so that all results can be considered
rigorously derived values. The line triangulations yield an
average mean value for the ratio of mean error of unit weight
before and after adjustment of 1:1.746, with a range of from
1:0.706 to 1:2.429. The theoretical expected average value is
of course | : 1. This means that the observational data do not
completely fill the accuracy expectations computed in the
above cited partial analysis, a fact that was already mentioned
in connection with the obtained mean error of unit weight
after adjustment in the final triangulation. However, it is
gratifying to note that this value increases only slightly from
1.746 for the average of all individual line adjustments to 1.830
for an adjustment based on the combination of all obser-
vations. These figures indicate that the entire body of data is
apparently free of perturbing systematic errors and satisfies
with practically no constraint the three-dimensional geo-
metrical closure condition of the world net.

In order to strengthen this conclusion a comparison was
made between the directions derived from the individual line
adjustments and those of the combined solution. The resulting
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Fig. 20. Plate coordinate residuals for two-plate events (combined x
and y values).

azimuth and elevation angle differences are shown in Figures
17 and 18 with their 3¢ errors and are combined in histograms.
Although these results do not fully meet ideal statistical ex-
pectations, it is not otherwise really possible to draw any con-
clusions regarding the presence of possible systematic error in-
fluences in the triangulations of the individual lines.

In order to analyze the accuracy of the shutter synchroniza-
tion the following argument can be applied to the results of the
individual line adjustments. Simple geometric considerations
suggest that the larger the residual errors, due to synchroniza-
tion discrepancies, in the spatial triangulation, the larger the
angle is between the orbital plane of the satellite and the line to
be triangulated. Because the Pageos satellite has an ap-
proximately polar orbit, it is sufficient to plot the mean error
of unit weight after adjustment for the individual line ad-
justments versus the azimuth, or azimuth minus 180°, of the
triangulated line. As Figure 19 shows, the distribution of these
values is circular, and no dependence on azimuth can be
detected. This test at least does not indicate the influence of
any synchronization errors.

An examination of the statistical distribution of the 29104
residuals in the overall adjustment presents a further and ob-
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Fig. 22. The rms of mean coordinate errors of adjusted station positions.
TABLE 8. Coordinate Differences Betwsen Transformed Doppler
Solution and Translated BC-4 Solution After X¥Z Fit

Station No. and Name Ad, m AX, m Ak, m Resultant

1, Thule 10.198 -2.216 10.464 14.779

2, Beltsville -1.254 1.201 -4.516 4.839

3, Moses Lake ~3.072 5.628 -3.670 7.388

4, Shemya 5.711 13.780 15.061 21.198

6, Tromso -1.451 -17.014 7.566 18.677

7, Azores -10.097 -5.716 4.377 12,401

8, Surinam 0.002 1.959 -8.694 8.912

9, Quito 6.507 10.573 -7.272 14,388

11, Maui 4.162 -2.037 8.789 9.935

12, Wake -14.550 -10.924 -24.453 30.479

13, Kanoya 6.458 0.116 3.956 7.574

15, Mashhad 3.600 4.048 1.256 5.561

16, Catania 1.740 -1.638 3.341 4.107

19, Dolores -18.425 15.163 -4.296 24.245

20, Easter 7.924 13.930 3.152 16.333

22, Pago Pago 4.227 -6.107 -5.317 9.134

23, Thursday -1.735 -7.291 -15.435 17.159

31, Invercargill -7.362 -9.689 -5.584 13.389

32, Perth 3.261 0.162 0.665 3.332

38, Revilla -5.298 0.445 3.129 6.169

40, Cocos 3.360 0.864 2.135 4.073

42, Addis Ababa 14.086 -1.952 5.724 15.329

43, Sombrero -20.140 3.173 24,247 31.680

45, Mauritius 3.838 5.642 1.044 6.903

47, Zamboanga 3.162 3.466 -9.571 10.659

50, Palmer -19.872. -5.176 12.703 24,147

53, McMurdo -18.103 -1.576 -4.321 18.678

55, Ascension -7.126 -10.677 0.245 12.838

59, Christmas 4.404 -4.747 -4,207 7.722

60, Culgoora -12.420 -9.048 -2.916 15.641

63, Dakar 0.998 5.593 0.304 5.690

64, Chad 5.889 2.226 5.226 8.182

65, Hohenpeissenberg , 5.497 -8.304 6.434 11.856

67, Natal -10.375 -5.277 3.692 12.212

68, Johannesburg 1.352 2.525 -8.008 8.504

72, Thailand 3.350 6.659 -8.712 11.466

75, Mahé 8.413 0.122 -6.102 10.394

A equals BC-4 minus Doppler;

for Ak, and #14.376 m

for resultant.

™ms values

are 8.916 m for A¢, +7.179 m for A\, *8.697 m
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Fig. 23. Statistical results from nine combined solutions with varying weighl assumptions for the colocated Doppler
stations.

viously necessary opportunity to analyze the data. Figures 20
and 21 are histograms of the residuals in events that were
observed from two and three stations, respectively. In order
to compare these distributions with their theoretical normal
distribution curves the residuals would have to be normalized,
this process requiring the computation of the covariance
matrix

%, = B — AN-'AToy? (5)

This is, in the present case, a 29104 X 29104 completely filled
square matrix, an obvious impossibility. As a result we are
forced to neglect the geometric content of the second term of
the expression and to normalize the residuals v approximately
by dividing each with the mean error of the corresponding
observation before adjustment. The greater the number of
observations available for the determination of the position of
the satellites or, in other words, the greater the number of
stations observing the satellite, the more acceptable is the
proposed approximation for the normalization of the
residuals. This relationship may explain at least in part the fact
that the fit of the normal curve to the histogram is better for
the three-station events.

If one accepts the mean error of unit weight after adjustment
as a significant measure for the inherent observational ac-

curacy, we have mean coordinate errors for the triangulated
stations as shown in Figure 22. It should be noted that
although qualitatively the material at all stations is uniform,
the quantity varies somewhat, the result being the variations of
the coordinate errors.

Combination Solution

Based on the principles of celestial mechanics, the inter-
pretation of the orbital parameters of satellites as derived from
time-correlated observations permits not only the determina-
tion of the parameters of a mathematical model of the earth’s
gravitational field but in addition the three-dimensional
positions of the satellite observing stations within a framework
of coordinates referenced to the earth’s mass center.

Satellite triangulation, on the other hand, is a measuring
method in which the three-dimensional positions of a number
of points of the earth’s surface are established by purely
geometric means.

Quite generally, satellite triangulation produces coordinates
for the camera stations that should, in principle, agree except
for a translation with the corresponding results from dynamic
satellite geodesy, even though the methods are completely
different in conceptual approach. This difference extends as
well to the determination of scale, which in geometric satellite
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TABLE 9. Three-Dimensional Cartesian Coordinates From Combined Final Solution

Station No. and Name X, m ax, m Y, m Oy, m Z, m oz, m
1, Thule 546588.043 2,524 1389976.770 32.442 6180221.157 +3.191
2, Beltsville 1130783.206 +2.464 4830812.170 +2.853 3994691.260 *+2.979
3, Moses Lake -2127810.402 *2.337 3785844.188 +2.610 4656021.673 +2.896
4, Shemya™ -3851759.714 +3.610 -396416.742 +3.622 5051324.861 *4,235
6, Tromso 2102943.362 *2.365 -721679.260 +2.697 5958170.871 +3.090
7, Azores 4433652.575 +3.091 2268128.968 +2.686 3971641.629 *3.327
8, Surinam 3623251.037 *£3.166 5214216.431 +3.288 601536.293 +3.489
9, Quito 1280842. 366 +3.158 6250939.190 +3.947 -10807.932 +3.487
11, Maui -5466002.263 +3.288 2404414 .762 +2.767 2242214.785 *3.235
12, Wake -5858531.333 +3.287 -1394513.654 +2.966 2093798.651 +3.211
13, Kanoya -3565848.055 *+3.138 -4120713.101 - *3.636 3303409.134 +3.581
15, Mashhad 2604363.535 +2.345 -4444158.701 +2.711 3750306.588 +2.712
16, Catania 4896401.374 +2.357 -1316181.910 +2.316 3856657.080 +2.572
19, Dolores 2280628.090 +2.674 4914528.492 *2.950 -3355416.607 +3.163
20, Easter -1888587.555 +£3.790 5354875.392 +3.952 -2895751.980 +3.784
22, Pago Pago -6099939.342 +3.122 997345 .983 +2.730 -1568582.700 +3.208
23, Thursday Isl. -4955355.561 +2.613 -3842245.988 +2.427 -1163843.516 *+2.534
31, Invercargill -4313799.508 +2.680 -891345.724 +2.588 -4597253.294 ) +2.833
32, Perth -2375382.732 *2.505 -4875545.638 +2.621 -3345387.849 +2.728
38, Revilla -2160960.225 +2.510 5642694.520 +3.078 2035358.416 +3.176
39, Pitcairn -3724745.647 +6.280 4421218.035 +5.694 -2686087.346 +5.258
40, Cocos -741953.040 +3.161 -6190790.099 *+3.069 ~1338547.676 *2.752
42, Addis Ababa 4900753.422 +2.762 -3968244.643 +2.626 966329.417 *2.552
43, Sombrero 1371383.334 +2.724 3614745.095 +3.157 -5055927.530 +3.641
44, Heard 1098912.818 15.747 -3684612.693 +6.212 -5071853.727 +7.780
45, Mauritius 3223440.444 +2.656 -5045332.006 +2.739 -2191798.454 +2.698
47, Zamboanga -3361931.463 +2.812 -5365800.248 +3.094 763627.375 +3.330
50, Palmer 1192684.033 +3.433 2450986 .983 +4,323 -5747037.701 +4.672
51, Mawson 1111352.024 *4.285 -2169264.675 +3.238 -5874322.862 *4.844
52, Wilkes -902583.987 +3.525 -2409530.660 +3.232 -5816542.503 +4.730
53, McMurdo -1310828.143 *+3.356 -311271.145 +3.073 -6213265.956 +3.958
55, Ascension 6118342.544 +3.108 1571732.245 +2.883 -878608.379 +3.089
59, Christmas -5885315.086 +3.027 2448357.151 +2.732 221669.643 +£3.145
60, Culgoora -4751621.039 *+2.483 -2792063.383 +2.372 -3200156.628 +2.442
61, S. Georgia 2999924 .593 +3.745 2219357.041 4,232 -5155247.563 *+4.886
63, Dakar 5884475.772 +2.853 1853478.486 +2.307 1612848. 261 +2.930
64, Chad 6023393.960 +2.749 -1617940.871 +2.236 1331726.674 $2.508
65, Hohenpeissenberg 4213570.222 +2.356 -820837.313 +2.346 4702769 .262 +2.758
67, Natal 5186415.778 +3.301 3653921.575 +3.208 -654288.938 +3.072
68, Johannesburg 5084832.837 +3.146 -2670338.698 +2.580 -2768083.655 +3.248
69, Da Cunha 4978430.027 +7.231 1086856.181 +5.644 -3823164.893 +7.581
72, Thailand -941678.219 +3.661 -5967438.461 +3.337 2039300.514 +2.969
73, Chagos 1905147.827 +2.911 -6032272.479 +3.482 -810729.775 +3.001
75, Mahé 3602828.788 +3.024 -5238237.170 +3.096 -515947.433 £2.'773
111, Wrightwood -2448831.364 +2.679 4667972 .160 +3.052 3582744.578 +3.162

triangulation is established by measuring the length of at least
one side in the net by space traverse, whereas in dynamic
satellite geodesy the scale is determined from the physical
quantity GM (gravitational constant times mass of the earth).

The fundamental differences of the two methods provide the
logical justification for the establishment of a worldwide
geodetic system using both approaches, the method of
dynamic satellite geodesy as well as that of geometric satellite
triangulation. The basic equivalence of the results with respect
to spatial coordination of the observation stations suggests a
comparison and combination of such solutions.

R. J. Anderle of the Naval Weapons Laboratory, Dahlgren,
Virginia, has kindly furnished the National Geodetic Survey a
list of three-dimensional coordinates of 37 stations resulting
from a dynamic solution and referenced to the mass center of
the earth as origin. These stations are located in the close
vicinity of BC-4 stations with the exception of five that are
somewhat farther away. In each case the relative positions of
the two neighboring stations were determined by a local survey
tie. In order to make a valid comparison of the two solutions it
is first necessary to translate the BC-4 coordinate system,
which has an arbitrary origin, into the origin of the dynamic
solution, the mass center, and to rotate the Doppler result
about its z axis in order to make the two systems compatible

with respect to longitude. However, in the comparison adjust-
ment, two further rotations and a scale factor were modeled.
These additional rotations give an indication of to what extent
the orientations of the conventional pole-referenced rotation
axes differ in the dynamic and the geometric solutions.
Likewise, the scale factor reveals the difference in scale that, as
was pointed out before, is derived in the one case from the
product GM and in the other from the measured terrestrial
base lines. The seven transformation parameters (three
translations, three rotations, and a scale factor) were com-
puted subject to a minimum condition on the sum of squares
of residual coordinate differences, in the following referred to
as XYZ fit.

The resulting mean discrepancy vector is 14.4 m, a value
that is influenced by discrepancies larger than 20 m in five
stations, as can be seen from the tabulation of the discrepancy
vectors in Table 8. Anderle gives for the precision of his
positions the standard deviations 64 = £1.5m, o) = £1.2m,
and ¢, = +1.6 m resulting in a station rms of +1.44 m. Con-
sidering the average standard deviation of the BC-4 system for
these stations and neglecting for this cursory consideration
the influence of the standard errors of the transformation
parameters, we arrive at an expectation for a mean discrep-
ancy vector of +4.35 m.
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The difference between the actually obtained mean dis-
crepancy vector of +14.4 m and the statistically expected value
of £4.35 m shows that the two systems are not quite compalti-
ble within the range of their standard deviations. We cite now
the transformation parameters obtained in this adjustment.
Translation of BC-4 result into mass center (BC-4 plus A
equals mass-centered BC-4 result) is

AX = +19.590 + 1.342
AY = —17.684 = 1.325
AZ = —14.344 £+ 1.506

Rotations of Doppler data to conform to translated BC-4
results are +0.6135” + 0.0451” for X to Y (left-handed system),
+0.1478” 4+ 0.0572" for Z to Y, and +0.0638" + 0.0563" for Z
to X. The scale factor to be applied to original Doppler data to
conform to BC-4 system scale is

S = 0.9999977230 + 0.0000002476

TABLE 10.

5369

An adjustment with three scale factors was also executed,

resulting in

S, = 0.9999973893 4= 0.0000003560
S, = 0.9999970923 =+ 0.0000003692
S, = 0.9999989720 =4 0.0000004397

The translation and rotation parameters were essentially the
same as those obtained before.

As can be seen, the scale parameters in x and y agree with
each other within the range of their standard deviations. The z
scalar shows a significant deviation, which, however, reduces
the average discrepancy vector after the XYZ fit by only 0.9 m.
Therefore the following results were based on the solution that
features only one scale factor. For this solution, Table 8 gives
the remaining coordinate differences between the BC-4 system
(Table 4) plus above given translation parameters and the
rotated and scaled Doppler system. With the coordinate
differences given in Table 8 and the translations and rotations

Coordinate Differences Between Translated BC-4 Solution

and Combined Solution After XYZ Fit

Station No. and Name A, m Ak, m A, m Resultant, m
1, Thule 4.905 -0.684 3.289 5,945
2, Beltsville 0.185 2.209 -1.853 2.889
3, Moses Lake -1.735 4.091 0.269 4.452
4, Shemya 1.505 4,864 9.935 11.164
6, Tromso -1.757 -5.547 4.648 7.447
7, Azores -0.822 -4.204 1.007 4.400
8, Surinam 0.515 2.110 -3.960 4,517
9, Quito 0.156 7.501 -2.580 7.933
11, Maui 0.582 -2.418 1.395 2.852
12, Wake -2.316 -4.665 -8.936 10.343
13, Kanoya 5.430 -0.159 0.670 5.474
15, Mashhad 0.712 1.603 2.850 3.347
16, Catania 0.101 -3.388 3.223 4.677
19, Dolores -10.566 4.851 3.581 12.165
20, Easter -0.379 10.325 4.284 11.185
22, Pago Pago 0.561 -3.868 -2.642 4.718
23, Thursday Isl. -0.403 -3.230 -5.313 6.231
31, Invercargill -2.236 -5.096 -1.787 5.845
32, Perth -2.256 1.600 -3.654 4.583
38, Revilla -1.674 4.430 0.880 4.816
39, Pitcairn 0.968 1.486 1.936 2.625
40, Cocos 1.943 2,522 -1.498 3.518
42, Addis Ababa 3.113 0.599 1.303 3.427
43, Sombrero -13.364 5.306 10.147 17.598
44, Heard -1.623 3.003 -1.282 3.646
45, Mauritius 2.317 1.935 -1.021 3.187
47, Zamboanga 2.878 0.990 -4.290 5.260
50, Palmer -17.711 1.139 12.169 21.519
51, Mawson -1.968 3.462 -0.566 4.022
52, Wilkes -5.689 1.977 -1.901 6.315
53, McMurdo -5.707 -3.880 -0.698 6.936
55, Ascension -2.133 -4.243 1.390 4.948
59, Christmas -0.003 -2.663 -1.335 2.978
60, Culgoora -2.556 -4.203 -3.594 6.092
61, S. Georgia -13.290 -3.515 8.088 15.950
63, Dakar -0.078 -3.618 0.264 3.628
64, Chad 0.396 -1.160 1.656 2.060
65, Hohenpeissenberg 0.397 -4.163 4.660 6.261
67, Natal -3.810 -3.519 0.459 5.207
68, Johannesburg 1.930 0.627 -2.082 2.908
69, Da Cunha -7.851 -6.563 6.722 12.243
72, Thailand 3.621 4,358 -2.717 6.284
73, Chagos 3.124 1,925 -1.213 3.865
75, Mahé 3.651 1.386 -1.143 4.069
78, Vila Efate 0.192 -4.949 -3.148 5.868
111, Wrightwood -0.250 4.706 0.827 4.784
123, Point Barrow -0.378 6.691 4,322 7.974

A equals BC-4 solution minus combined solution.

The mms values are #4.817 m for A¢g,

+3,974 m for A\, *4.183 m for Ak, and *7.516 m for resultant; » = 47,
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TABLE 11. Coordinate Differences Between Transformed Doppler Solution
and Combined Solution After XYZ Fit
Station No. and Name Ap, m Ak, M A, m Resultant, m
1, Thule 4.948 -1.690 7.309 8.987
2, Beltsville -2.044 -0.855 -2.602 3.418
3, Moses Lake -1.540 1.573 -3.619 4.236
4, Shemya 4.433 8.980 5.727 11.537
6, Tromso -0.062 -11.187 3.029 11.590
7, Azores -10.072 -1.351 3.282 10.679
8, Surinam -1.574 0.269 -4.707 4.970
9, Quito 5.469 3.704 -4.496 7.991
11, Maui 3.717 0.755 8.146 8.986
12, Wake -11.845 -6.005 -14.576 19.718
13, Kanoya 1.320 0.417 4.100 4.327
15, Mashhad 2.605 2.585 -1.262 3.881
16, Catania 0.976 1.908 0.143 2.148
19, Dolores -9.064 11.106 -7.536 16.195
20, Easter 7.860 4.731 -0.514 9.188
22, Pago Pago 4.182 -1.580 -1.630 4.758
23, Thursday Isl. -0.665 -3.988 -8.993 9.860
31, Invercargill -4.103 -4.126 -2.665 6.400
32, Perth 6.200 -1.870 5.400 8.432
38, Revilla -4.009 -3.528 2.629 5.953
40, Cocos 1.678 -2.067 4.543 5.265
42, Addis Ababa 10.339 -2.729 4.697 11.679
43, Sombrero -7.959 -1.174 14.647 16.711
45, Mauritius 1.132 3.045 2,671 4.206
47, Zamboanga 0.682 2.454 -4.308 5.004
50, Palmer -3.410 -5.423 1.174 6.512
53, McMurdo -11.079 2.695 -2.663 11.709
55, Ascension -6.249 -6.384 -1.088 9.000
59, Christmas 4.643 -1.483 -1.990 5.265
60, Culgoora -8.968 -4.719 1.850 10.302
63, Dakar 0.028 9.353 -0.024 9.354
64, Chad 4.612 3.340 3.648 6.763
65, Hohenpeissenberg 4.508 -3.934 1.788 6.244
67, Natal -7.821 -1.469 3.266 8.602
68, Johannesburg -1.506 1.312 -5.527 5.876
72, Thailand -0.145 2.282 -5.246 5.723
75, Mahé 4.334 -1.677 -4.459 6.441

A equals combined solution minus Doppler; rms values are +5.588 m for Ad, #4.436 m for
AX, *#5.339 m for Ak, and +8.911 m for resultant.

given before, it is a straightforward matter to compute
backwards from the BC-4 result (Table 4) to the original given
Doppler station data. The translated BC-4 system itsell
represents the strictly geometric result referenced to the mass
center of the dynamic solutions.

The problem for a combined solution is now to average the
coordinate values as obtained for the translated BC-4 system
and the rotated and scaled Doppler system. In recognition that
the two transformed systems differ, as is expressed by a rms
discrepancy vector of 14.4 m, more than 3 times the amount
expected from the individual solution accuracy statements, a
combination solution becomes a question of the weight ratio
between the two solutions. To shed light on this question, the
geometric satellite triangulation system was adjusted several
times, the transformed Doppler position coordinates for the
given 37 stations with various weights being introduced as con-
straints. The critical evaluation of these adjustments was made
in relation to the individually obtained sum of squares of the
weighted residuals for the geometric solution, a quantity that
because of its straightforward meaning is believed to be quite a
reliable indicator. The following graph (Figure 23) shows the
sum of the pvv versus the various weight assumptions made for
the Doppler results covering a range from +0.1 m to £5.0 m
for each of the given Doppler derived coordinates. On the left
side the pov sum is given as it is obtained from the strictly
geometric solution (without any Doppler station constraint)
for the one and eight scalar solutions mentioned earlier. The

dotted line indicates the standard deviation associated with the
pov sum.

From the [pvv] curve one can see, as was to be expected, that
an essentially rigorous enforcement of the Doppler result
(standard deviation of +£0.1 m) increases the [pvv] drastically;
in other words, the integrity of the geometric triangulation is
impaired. On the other hand, a weighting in accordance with a
standard deviation of +5 m results in a pvv sum identical to
the one obtained from a strictly geometric adjustment by using
the eight scale lines as constraints.

It is now unquestionably a decision of personal preference
as to which weighting factor for the dynamic solution to accept
as defensible for a combination result, at least in the range
from +2.5 to 4.0 m. On the other hand, the resulting
differences in the mean station coordinate discrepancy vectors
between these two solutions are rather small, amounting in
latitude to 1.5 m, in longitude to 1.2 m, and in height to 1.6 m.
In order to keep the increase in the [ pvv] small, when it is com-
pared with the strictly geometric solution, a weighting in ac-
cordance with a standard deviation of £3.5 m for all Doppler
coordinates was adopted. The solution was further con-
strained by the scalars, all weighted in accordance with a stan-
dard deviation of 1 part in 2 million. Table 9 gives the result of
this adjustment and the associated standard deviations for the
triangulated coordinates. Tables 10 and 11 show coordinate
differences between the combined solution and the BC-4 and
Doppler solutions, respectively. The mean error of unit weight
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after adjustment is 1.830 + 0.13, the same as that for the
purely geometric solution.

A comparison between the two sets of 29104 residual errors
from the purely geometric adjustment and the adjustment en-
forcing the Doppler results was made. These Av values have a
mean of +0.001 um. The maximum values encountered are
—0.537 um and +0.451 gm.

As a by-product the standard deviation for each event is
computed in each triangulation adjustment. A comparison of
these standard deviations between the purely geometric and
the combined solution shows that the range for these values in
the geometric solution is from £0.281 um to +3.462 upm and
for the combined solution from +£0.251 um to +3.468 um.

This statistical information is presented to give evidence that
in the combined solution, no undue strain on the observational
data of the geometric satellite triangulation is present.

Derived Geodetic Parameters

The semimajor axis a and the flattening f of a reference ellip-
soid may be regarded as the basic parameters for a geodetic

world system, its center coinciding with the earth’s center of

mass. The direction of the Z axis, i.e. the earth’s rotation axis,
is fixed by the conventionally adopted mean pole position at a
specified epoch and the direction of the X axis through the null
meridian by an identifiable point on the surface of the earth,

With the establishment of such a reference system the XYZ
coordinates of the combined solution as given in Table 9 can
be transformed into latitude, longitude, and ellipsoid height.
Furthermore, classical geodetic results referenced to individual
datum ellipsoids can be transformed to such a world system.

Using the values presented for the determination of these
quantities, we arrive at the following results. To begin with,
the station coordinates obtained in the geometric satellite
triangulation solution (Table 4), reduced to sea level, were ad-
justed to a best-fitting ellipsoid of revolution. The significance
of such a solution is somewhat dubious in view of the fact that
only 43 stations are available for which leveling heights were
obtained and that there is no a priori evidence that the mean of
the corresponding geoid heights is close to zero. The result is
shown in the first row of Table 12. The resulting translations
AX, AY, AZ on line | as well as those shown on lines 2, 6, 7,
and 11 for other solutions are not significant in themselves
because they depend entirely on the approximation values for
the mass-centered coordinates, introduced for the origin of the
geometric solytion. Only their consistency in the various
solutions is of interest.

The second solution is a repetition of the first with the
flattening f = 1/298.250, held fixed, a value that is derived by
dynamic satellite geodesy methods and is presently considered
to be reliable. This result is on line 2. Furthermore, ellipsoid
fits were executed, the results of the combined solution
resembling otherwise the solutions presented on lines 1 and 2.
These results are given on lines 3 and 4, respectively. Here, as
on lines 8 and 9, the AX, AY, AZ indicate to what extent the
coordinate origin of the specific solution differs from the mass
center of the dynamic solution. Still another computation was
performed, the combined solution holding the original posi-
tion of Anderle’s mass center fixed. In this solution, only the
semimajor axis ¢ was determined. This result is shown on line
5. With the same raw material these ellipsoid fit solutions were
repeated, the geoid heights as computed from raw data
published by Anderle [1973] being incorporated. The corre-
sponding results are shown on lines 6-10. On line 11 the result
of the station-to-station least squares fit, based on the

Best-Fitting Ellipsoid Parameters

TABLE 12.

5
)
<

AX, m

/f

a, 6,378,*++ m

Type of Solution

. Additional Data

Input

-16.40
-16.74

-14.82

+16.20

298.377

130.17

unconstrained ellipsoid fit

msl elevations
msl elevations

BC-4 result, 43 stations

2. BC-4 result, 43 stations

1.

-15.32

+16.29

298.250

132.80

ellipsoid fit constrained to dynamically

determined 1/f
unconstrained ellipsoid fit

-1.844
-1.835

+1.373 +2,434
+2.453

+1.370

298.246
298.250

133.98

msl elevations
msl elevations

3. Combined solution, 43 stations
4. Combined solution, 43 stations

133.90

ellipsoid fit constrained to dynamically

determined 1/f
ellipsoid fit constrained to dynamically

298.250

134.02

msl elevations

5. Combined solution, 43 stations

determined 1/f and to Anderle mass

center position
unconstrained ellipsoid fit

+14.702 -19.482 -13.816

298.409

126 .47

msl elevations and Anderle

6. BC-4-result, 37 statioens

geoidal heights ¥
msl elevations and Anderle

-20.181 -15.252

298.250 +15.140

129.45

ellipsoid fit constrained to dynamically

7. BC-4 result, 37 stations

determined 1/f
unconstrained ellipsoid fit

geoidal heights ¥
msl elevations and Anderle

+0,378 +1.183

298.322 ~1.9000

128.83

8. Combined solution, 37 stations

geoidal heights ¥
msl elevations and Anderle

-0.764 +0.721

298.250 -1.756

130.21

ellipsoid fit constrained to dynamically

9. Combined solution, 37 stations

determined 1/f
ellipsoid fit constrained to dynamically

geoidal heights N
msl elevations and Anderle

298.250

130.22

10. Combined solution, 37 stations

determined 1/f and to Anderle mass

center position
XYZ fit between Doppler and BC-4 result

geoidal heights ¥

+19.590 -17.684 -14.344

130.48

none

11. BC-4 result Doppler result,

3371

+1.33 *+1.51

+1.34

+1.58

37 stations
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after adjustment is 1.830 + 0.13, the same as that for the
purely geometric solution.

A comparison between the two sets of 29104 residual errors
from the purely geometric adjustment and the adjustment en-
forcing the Doppler results was made. These Av values have a
mean of +0.001 um. The maximum values encountered are
—0.537 um and +0.451 gm.

As a by-product the standard deviation for each event is
computed in each triangulation adjustment. A comparison of
these standard deviations between the purely geometric and
the combined solution shows that the range for these values in
the geometric solution is from £0.281 um to +3.462 upm and
for the combined solution from +£0.251 um to +3.468 um.

This statistical information is presented to give evidence that
in the combined solution, no undue strain on the observational
data of the geometric satellite triangulation is present.

Derived Geodetic Parameters

The semimajor axis a and the flattening f of a reference ellip-
soid may be regarded as the basic parameters for a geodetic

world system, its center coinciding with the earth’s center of

mass. The direction of the Z axis, i.e. the earth’s rotation axis,
is fixed by the conventionally adopted mean pole position at a
specified epoch and the direction of the X axis through the null
meridian by an identifiable point on the surface of the earth,

With the establishment of such a reference system the XYZ
coordinates of the combined solution as given in Table 9 can
be transformed into latitude, longitude, and ellipsoid height.
Furthermore, classical geodetic results referenced to individual
datum ellipsoids can be transformed to such a world system.

Using the values presented for the determination of these
quantities, we arrive at the following results. To begin with,
the station coordinates obtained in the geometric satellite
triangulation solution (Table 4), reduced to sea level, were ad-
justed to a best-fitting ellipsoid of revolution. The significance
of such a solution is somewhat dubious in view of the fact that
only 43 stations are available for which leveling heights were
obtained and that there is no a priori evidence that the mean of
the corresponding geoid heights is close to zero. The result is
shown in the first row of Table 12. The resulting translations
AX, AY, AZ on line | as well as those shown on lines 2, 6, 7,
and 11 for other solutions are not significant in themselves
because they depend entirely on the approximation values for
the mass-centered coordinates, introduced for the origin of the
geometric solytion. Only their consistency in the various
solutions is of interest.

The second solution is a repetition of the first with the
flattening f = 1/298.250, held fixed, a value that is derived by
dynamic satellite geodesy methods and is presently considered
to be reliable. This result is on line 2. Furthermore, ellipsoid
fits were executed, the results of the combined solution
resembling otherwise the solutions presented on lines 1 and 2.
These results are given on lines 3 and 4, respectively. Here, as
on lines 8 and 9, the AX, AY, AZ indicate to what extent the
coordinate origin of the specific solution differs from the mass
center of the dynamic solution. Still another computation was
performed, the combined solution holding the original posi-
tion of Anderle’s mass center fixed. In this solution, only the
semimajor axis ¢ was determined. This result is shown on line
5. With the same raw material these ellipsoid fit solutions were
repeated, the geoid heights as computed from raw data
published by Anderle [1973] being incorporated. The corre-
sponding results are shown on lines 6-10. On line 11 the result
of the station-to-station least squares fit, based on the

Best-Fitting Ellipsoid Parameters

TABLE 12.
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Type of Solution

Additional Data.

Input

-16.40
-16.74

-14.82

+16.20

298.377

130.17

unconstrained ellipspid fit

msl elevations
msl elevations

BC-4 result, 43 stations
2. BC-4 result, 43 stations

1.

-15.32

+16.29

298.250

132.80

ellipsoid fit constrained to dynamically

determined 1/f
unconstrained ellipsoid fit

-1.844
-1.835

+1.373 +2,434
+2.453

+1.370

298.246
298.250

133.98

msl elevations
msl elevations

3. Combined solution, 43 stations
4. Combined solution, 43 stations

133.90

ellipsoid fit constrained to dynamically

determined 1/f
ellipsoid fit constrained to dynamically

298.250

134.02

msl elevations

5. Combined solution, 43 stations

determined 1/f and to Anderle mass

center position
unconstrained ellipsoid fit

+14.702 -19.482 -13.816

298.409

126.47

msl elevations and Anderle

6. BC-4-result, 37 statiens

geoidal heights N
msl elevations and Anderle

-20.181 -15.252

298.250 +15.140

129.45

ellipsoid fit constrained to dynamically

7. BC-4 result, 37 stations

determined 1/f
unconstrained ellipsoid fit

geoidal heights ¥
msl elevations and Anderle

+0.378 +1.183

298.322 -1.9000

128.83

8. Combined solution, 37 stations

geoidal heights ¥
msl elevations and Anderle

-0.764 +0.721

298.250 -1.756

130.21

ellipsoid fit constrained to dynamically

9. Combined solution, 37 stations

determined 1/f
ellipsoid fit constrained to dynamically

geoidal heights ¥
msl elevations and Anderle

298.250

130.22

10. Combined solution, 37 stations

determined 1/f and to Anderle mass

center position
XYZ fit between Doppler and BC-4 result

geoidal heights ¥

+19.590 -17.684 -14.344

130.48

none

11. BC-4 result Doppler result,

3371

+1.33 +1.51

+1.34

+1.58

37 stations
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matching of the positions of 37 stations as determined by the
geometric and the dynamic method, is shown,

From the information presented in Table 12 it was con-
cluded that a reference ellipsoid with 1/f = 298.250 and a
semimajor axis of 6,378,130 m would correspond best to the
available information.

Table 13 gives the corresponding latitude, longitude (east),
and ellipsoid heights with their respective standard deviations
computed from the XYZ coordinates of the combined solution
(Table 9).

In Table 14 the survey data are given. A comparison of the
result presented in Table 13 with the results of astronomical
position observations and the values of mean sea level obser-
vatjons, as given with the survey data, allows the computation
of plumb line deflections and the determination of geoid
heights. The corresponding results are tabulated in Tables 15
and 16, respectively.

The AX values in Table 15 refer in accordance with the given
geographic coordinates on Table 13 to a system of east
longitude, with the conventional designation astro minus
geodetic equals A. The A¢ values represent absolute position
deflections in the meridian of the station, positive to the south.
The computed » values, positive to the east, however, depend

TABLE 13. Geographic Coordinates From Combined Solution Computed With a =
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quantitatively on the chosen position of the null meridian of
the combined solution. In order ta average them out an ad-
ditional rotation in longitude would be necessary, which
would have to be added as a constant to all longitudes
tabulated in Table 13. Such a correction amounts to

AN = Z(AA ._ >\G)i Cos ¢|'

Z cos ¢,

(east longitudes positive). The significance of such a correction
Is, however, impaired by the relatively small number of plumb
line deflections available.

Table 16 gives the geoid heights as computed from the com-
bined solution (Table 13) and the msl elevations of the survey
data. For comparison the geoid heights as obtained by
Anderle from the dynamic solution are given in the second
column, and the corresponding differences are given in the
column labeled AN.

With the exception of stations 11 (Hawaii), 12 (Wake), 13
(Japan), and 43 (Sombrero) these A values are well within the
expected level of accuracy. Obviously, both sets of N values
are also affected by the uncertainties in mean sea level for the
various datums, to which the leveling data are referred.

= —0.485" (6)

6378130 m and f = 1:298,250

Ellipsoid
Station No. and Name Latitude ap, m Longitude Gy, M Height, m gy, m
1, Thule 76°30'4.8627""'N 2.184 291°27'59.4280"E 2.675 219.379 3.236
2, Beltsville 39°01'39.3318"N 2.540 283°10'27.9765"E 2.440 ~1.458 3.264
3, Moses Lake 47°11'6.6534"N 2.424 240°39'43.5760""E 2.308 336.069 3.069
4, Shemya - §2°42'48.9705"N 3.782 174°7'26.0462"E 3.475 39.745 4,193
6, Tromso 69°39'44.4978"N 2.361 18°56'27.5273"E 2.535 133.357 3.211
7, Azores 38°45'36.0847"N 2.864 332°54'25.2813"E 2.652 108.829 3.546
8, Surinam 05°26'53.4378'"N 3.457 304°47'40.6928"E 2.880 -20.115 3.585
9, Quito 0°5'51.7281"S 3.504 281°34'47.4488"E 3.163 2694.047 3.937
11, Maui 20°42'26.9218"N 3.045 203°44'38.3808"E 2.696 3075.656 3.522
12, Wake 19°17'28.2961"N 2.947 166°36'39.4948"E 2,896 4.297 3.589
13, Kanoya 31°23'42.5648"N 3.278 130°52'16.2716"E 3.390 83.416 3.694
15, Mashhad 36°14'25.5340"N 2.441 59°37'43.9207"E 2.459 963.436 2.860
16, Catania 37°26'38.5025"N 2.158 15°2'44.8491"E 2.240 45.972 2.800
19, Dolores 31°56'35.5287"S 2.992 294°53'38.5873"E 2.579 627.599 3.203
20, Easter 27°10'36.4176"S 3.317 250°34'22.7515"E 3.544 219.755 4.554
22, Pago Pago 14°19'54.4748"S 3.141 189°17'8.7112"E 2.701 35.347 3.223
23, Thursday Isl. 10°35'2.9982"S 2.511 142°12'39.5544"E 2.341 119.259 2.718
31, Invercargill 46°24'58.1142"S 2.542 168°19'31.6698"E 2.588 -0.007 2.949
32, Perth 31°50'24.9112"S 2.482 115°58'31.8154"E 2.420 -8.327 2.927
38, Revilla 18°43158.2071"N 3.020 249°2'41.4901"E 2,515 -14.701 3.235
39, Pitcairn 25°4'6.8403"S 3.686 229°53'12.6661"E 4.975 317.220 7.817
40, Cocos 12°11'44.0207"'S 2.682 96°50'3.0512"E 3.132 -29.827 3.163
42, Addis Ababa 8°46'12.5193"N 2.574 38°59'52.1902"E 2.607 1872.647 2,766
43, Sombrero 52°46'52.5872"S 3.472 290°46'33.7413"E 2.662 95.214 3.378
44, Heard 53°1'9.0693"S 6.472 73°23'35.2173"E 6.032 39.662 7.314
45, Mauritius 20°13'53.1132"S 2.586 57°25'32.4106"E 2.634 137.814 2.869
47, Zamboanga 6°55'20.7741"N 3.324 122°4'8.8287"E 2.696 71.335 3.215
50, Palmer 64°46'26.7693"'S 4,870 295°56'53.4936"E 3.289 26.028 4.184
51, Mawson 67°36'4.8017"S 3.925 62°52'23. 3298"E 3.829 39.813 4.690
52, Wilkes 66°16'44.9811"S 3.267 110°3217.4526"E 3.359 10.755 4.808
53, McMurdo 77°50'41.6571"S 3.445 166°38'30.7416"E 3.006 -41.095 3.907
§5, Ascension 7°58'15.4065"S 3.058 345°35'34.4179"E 2.943 83.939 3.092
59, Christmas 2°0'18.3902"N 3.148 202°35'16.2920"E 2.593 24.514 3.157
60, Culgoora 30°18'34.2631"S 2.339 149°33'41.0676"E 2.275 235.088 2.666
61, S, Georgia 54°17'1.1326"S 3.750 323°30'20.9006"E 4.454 19.203 4.659
63, Dakar 14°44'42.1988'"'N 2.847 342°31'0.2512"E 2.306 55.378 2.945
64, Chad 12°7'54.5921"N 2.520 15°2'7.0547"E 2.223 306.766 2.756
65, Hohenpeissenberg 47°48'3.9953"N 2.184 11°1'25.0048"E 2.296 977.952 2,928
67, Natal 5°55'39.0642"S 3.061 324°50'4.6598"E 3.199 38.288 3.328
68, Johannesburg 25°52'59.1717"S 2.975 27°42'23.5867"E 2.587 1536 .885 3.402
69, Da Cunha 37°3'53.6135"S 6.418 347°41'5.3077"E 5.714 45.432 8.227
72, Thailand 18°46'10.5737"N 2.770 98°58'2.9441"E 3.622 259.580 3.545
73, Chagos 7°21'6.6304"S 2.994 72°28'21.1236"E 2.969 -72.915 3.446
75, Mahé 4°40'14.6759"S 2.753 55°28'48.1258"E 2.830 545.382 3.298
111, Wrightwood 34°22'54.4315"N 2.628 242°19'6.1310"E 2.757 2252.261 3.457




TABLE 14.

Survey Coordinates of BC-4 Stations

BC-4 Station

Geodetic Coordinates

Astronomic Coordinates

Elevation
of Reference
Point Above

No. and Name ¢ Ag LY} Ly msl, m N, m Datum Ellipsoid
001, Thule 76°30'05.3226"N 68°32133.1709"W 76°30'11.67"N 68°32'48.91'W 206.0 +32.0 Qornoq International
002, Beltsville 39°01'39.003"N 76°49'33,058"W 39°01'37.73"N 76°49'24 .65"W 44.3 -0.4 North American 1927 Clarke 1866
003, Moses Lake 47°11'07.1324"N 119°20'11.8815"W 47°11'03.24"N 119°20'17.05"W 368.74 -16.0 North American 1927 Clarke 1866
004, Shemya 52°4254._8940"N 185°52'22.1299"W 52°43'03.48"N 185°52'15.08"W 36.76 -46.0 North American 1927 Clarke 1866
006, Tromso 69°39'44.2901"N 341°03'27.6743"W 69°39'43.24"N 341°03'12.96"W 106.0 +12.6 European International
007, Azores 38°45'36.7250"N 27°05'38.9360"W 38°45'43.28"N 27°05'24,59"W 53.26 XX SW Base International
008, Surinam 05°27'04.9824"N 55°12'13.9921"W 05°26'48.96"N 55°12121.21'"W 18.38 +3.0 Provisional South American 1956 International
009, Quito 00°05'50.4680"S 78°25'10.7875"W 00°05'53.09"S 78°25'03.09"W 2682.1 +24.6 South American 1969 South American
011, Maui 20°42'38.5610"N 156°15'31.4711"W 20°42'21.86"N 156°15'22.95"W 3049.27 cee 01d Hawaiian Clarke 1866
012, Wake 19°171'23.2275"N 193°23'20.2197"W 19°17'24.40"N 193°23'34,82"W 3.46 R Astro 1952 International
013, Kanoya 31°23'30.13971"N 229°07'35.14051"W 31°23138.48"N 229°07'34.29'"W 65.90 +27.0 Tokyo Bessel
015, Mashhad 36°14'29.5269'"N 300°22'17.2712"W 36°14'27.82"N 300°21'59.20"W 991.05 -38.0 European 1950 International
016, Catania 37°26'42.3451"N 344°57'12.3041"W 37°26'38.70"N 344°56'56.81'"W 9.00 -16.6 European International
019, Villa Dolores 31°56'33.9540"S 65°06'18.658"W vee 608.18 +13.0 South American 1969 South American
020, Easter Isl. 27°10'39.2132"S 109°25'42.5051"W 27°10'39.21"S 109°25'42.51"W 230.8 .o Astro 1967 International
022, Pago Pago 14°20'12.216"S 170°42'46.758"W 14°20'08.34"S 170°42'52.15"W 5.34 +22.0 Samoa 1962 Clarke 1866
023, Thursday Isl. 10°35'08.0374"S 217°47'24.5045"W 10°35'06.78"S 217°47'25.11"W 59.6 -4.6 Australian National Australian National
031, Invercargill 46°25'03.4908"S 191°40'28.8448"W 46°25'01.05"S 191°40'25.10"W 0.95 eee Geodetic 1949 International
032, Perth 31°50'28.9922"'S 244°01'33.3824"W 31°50'24.57"'S 244°01'56.28"W 26.30 +15.4 Australian National Australian National
038, Revilla 18°43'44.93"N 110°57'20.72"W 18°43'44.93"N 110°57'20.72"W 23.20 cee Isla Socorro Astro Clarke 1866
039, Pitcairn 25°04107.1461"S 130°06'48.1184"W 25°04'07.15"8 130°06'48.12"W 339.39 eee Pitcairn Astro 1967 International
040, Cocos 12°11'57.91"S 263°10'12.92"W 4.41 (EX] Anna Astro 1965 Australian National
042, Addis Ababa 08°46'08.5013"N 321°00'10.8355"W 08°46'05.74"N 321°00'02.81"W 1886.46 -8.0 Adindan Clarke 1880
043, Cerro Sombrero 52°46'52.4683"S 69°13'30.4273"W 52°46'50.74"S 69°13'33.56"W 80.66 Provisional South Chile 1963 International
044, Heard Isl. ees eee 53°01'12.0309"S  286°36'32.5846"W 3.771 ces Astro 1969 International
045, Mauritius 20°13'41.942"S 302°34'52, 339"W 20°13'37.48"S 302°35'07.20"W 138.2 e Le Ponce Astro Clarke 1880
047, Zamboanga 06°55'26.132"N 237°55'55.162"W 06°55'18.29"N 237°55'53.55"W 9.391 “ee Luzon Clarke 1886
050, Palmer ese eee 64°46'33.98"S 64°03'22.96'"W 16.44 oo Palmer Astro 1969 Clarke 1880
051, Mawson sae LX) 67°36'03.08"S 297°07'35.59"W 11.3 e Astro 1969
052, Wilkes (Casey) LEX} eee 66°16'45.12"S 249°271'55,39"W 18.0 Astro 1969
053, McMurdo 77°50'46.2487"S 193°21'52.4155"W 77°50'43,.32"S 193°21'46.14"W 19.09 Camp Area Astro 1961-1962 USGS International
055, Ascension 07°58'16.6342"S 14°24'27.2363"W 07°58'18.27"S 14°24'30.36"W 70.94 LR Ascension Isl. 1958 International
059, Christmas Isl. see ees 02°00'35.622"N 157°24'38.038'"W 2.75 eee Christmas Isl. 1967 Astro International
060, Culgoora 30°18'39.4182"S 210°26'23.1079"W 30°18'36.14"S 210°26'28.89"W 211.1 +0.7 Australian National Australian National
061, S. Georgia Isl. see ese 54°16'39.5147"S 36°29%17.4690"W 4.180 LR Astro International
063, Dakar 14°44' 39.8986"N 17°28'57.5476"W 14°44144,23"N 17°29'04.41"W 26.28 +20.7 Adindan Clarke 1880
064, Ft. Lamy 12°07¥51.7410"N 344°57'53.7659"W 12°07'53.939"N 344°57'51.044"W 295.41 +23.6 Adindan Clarke 1880
065, Hohenpeissenberg 47°48'07.009"N 348°58'31.4263"W 47°48'09.54"N 348°58'29.47'"W 943.50 -0.6 European International
067, Natal 05°55'37.4136"S 35°09'53.8003"W 05°55137.74"S 35°09'S7.03"W 40.63 +26.14 South American 1969 South American
068, Johannesburg 25°52'56.98"S 332°17'34.83'"W 25°52'50.06"S 332°17'28.82"W 1523.8 oo Buffelsfont Clarke 1880
069, Tristan LR oo 37°03'26.2572"S 12°19'06.4452"W 24.83 eee Astro 1968 International
072, Chieng Mai 18°46'06.149"N 261°01'44,877"W 18°45'47.50'N 261°01'51.62"W 308.4 LR Indian Everest
073, Diego Garcia 07°20'58.5270"S 287°31%27.8444"W 7°20'58.53"S 287°31'27.84"W 3.85 eve 1969 Astro International
075, Mahé 04°40711.614"S 304°31'06.617"W 4°40'10.31"S 304°31'06.02"W 588.98 (R Mahé 1971 Clarke 1880
111, Wrightwood 34°22'54.5368"N 117°40'50.5161"W 34°23'00.80"N 117°40'35.38"W 2284.41 -23.0 North American 1927 Clarke 1866




5374

TABLE 15.

Components of Vertical Deflections
Station Ad AX n* cos ¢
4
001 6.81" -48.34" -11.28 0.2334
002 -1.60" 7.37" 5.72 0.7768
003 -3.41" -0.63" -0.43 0.6796
004 14.51" 18.87" 11.43 0.6058
006 -1.26" 19.51" 6.78 0.3475
007 7.20" 10.13" 7.90 0.7797
008 -4.48" -1.90" -1.89 0.9955
009 -1.36" 9.46" 9.46 1.0000
011 -5.06" -1.33" -1.24 0.9353
012 -3.90" -14.31" -13.51 0.9439
013 -4.08" 9.44" 8.06 0.8537
015 2.29" 16.88" 13.62 0.8066
Q16 0.20" 18.34" 14.56 0.7939
020 -2.79" -5.26" -4.68 0.8896
022 -13.87" -0.86" -0.83 0.9689
023 -3.78" -4.66" -4.58 0.9830
031 -2.94" 3.23" 2.23 0.6894
032 0.34" -28.10" -23.87 0.8496
038 -13.28" -2.21" -2.09 0.9470
039 -0.31" -0.79" -0.72 0.9058
040 -13.89" -15.97" -15.61 0.9774
042 -6.78" 5.00" 4.94 0.9883
043 1.85" -7.30" -4.42 0.6048
044 -2.96" -7.80" -4.70 0.6016
045 15,63 -39.61" -37.17 0.9383
047 -2.48" -2.38" -2.36 0.9927
050 -7.21" -16.45" -7.01 0.4260
051 1.72" 1.08" 0.41 0.3811
052 -0.14" -2.84" -1.14 0.4022
053 -1.66" -16.88" -3.55 0.2105
055 -2.86" -4.78" -4.73 0.9903
059 17.23" 5.67" 5.66 0.9994
060 -1.88" -9.96" -8.60 0.8633
061 21.62" 21.63" 12.63 0.5838
063 2.03" -4.66" -4.51 0.9670
064 ~0.65" 1.91" 1.87 0.9777
065 5.54" 5.53" 3.71 0.6717
067 1.32 -1.69" -1.68 0.9946
068 9.11" 7.59" 6.83 0.8997
069 27.35" -11.75" -9.38 0.7981
072 -23.07" 5.44" 5.15 0.9468
073 8.10" 11.04" 10.95 0.9918
075 4.37" 5.85" 5.83 0.9967
111 6.37" 18.49" 15.26 0.8253

A equals astro minus geodetic.
= AX cos ¢.

A comparison between the XYZ coordinates given in Table
9 and the corresponding information computed from the sur-
vey data (Table 14) results in the translations Ax, Ay, Az.
These translations transform station by station the survey data
into a mass-centered system.

Table 17 shows these results, the stations being grouped in
terms of specific datums. Large differences in these
translations for stations within a specific datum suggest distor-
tions in such a datum.

In the column labeled N of Table 17 the geoid height used
for the computation of the station shift components is given.
At stations where such information was not available from the
collected survey data the corresponding geoid heights from the
combined solution (Table 16) were used, these cases being in-
dicated by an asterisk.

Furthermore, a set of station shift components was com-
puted on the basis of astronomical positions of the BC-4
stations where no other survey data were available. Here the
computations were again based on geoid heights obtained
from the combined solution, and furthermore, an ellipsoid
with f = 1:298.25 and an equatorial radius of 6,378,130 was
used. The resulting Ax, Ay, and Az of shifts express therefore
only the plumb line deflections tabulated in Table 15.
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For datums for which more than one station is available,
datum shift parameters were computed, allowance being made
for an additional scale factor and an additional rotation in
longitude in addition to the conventional three trabislations.
These results are shown in Table 18. The smalles the indicated
coordinate differences after datum shift, the more closely the
survey result resembles the relative geometry ds determlned by
satellite triangulation.

Because of the small number of stations belongmg to a
specific datum, it is not possible to compute meaningful datum
shifts allowing an adjustment in the spatial orientation of the
rotation axis of the individual datum ellipsoids, as desirable as
such a test would be from the theoretical standpoint. Such a
complete set of datum shift parameters will be computed for
the North American Datum when the results of the satellite
densification program in the area of the North American con-
tinent are completed.

The BC-4 world net is the result of a strictly three-
dimensional geometric triangulation, including a scale derived

TABLE 16. Height of Geoid Above Ellipsoid ()
IV Comblned
Solution Based on N Anderle

Station 6378130, m Solution, m AN, m
1 13.379 7.30 +6.08
2 -45.758 -43.7 -2.05
3 -32.671 -29.70 -2.97
4 2.985 -3.40 +6.38
6 27.357 24.16 +3.20
7 55.569 51.87 +3.70
8 -38.495 -34.25 -4.25
9 11.947 15.90 -3.95
11 26.386 15.81 +10.58
12 0.837 15.08 -14.24
13 17.516 27.80 -10.28
15 -27.614 -26.80 -0.81
16 36.972 36.42 0.55
19 19.419 26.44 -7.02
20 -1]1.045 -11.20 0.16
22 30.007 30.83 -0.82
23 59.659 67.88 -8.22
31 -0.957 0.95 -1.91
32 -34.627 -40.30 5.68
38 -37.901 -41.20 3.30
39 -22.170 v LR
40 -34.237 -39.40 5.16
42 -13.813 -18.90 5.09
43 14.554 -0.65 15.20

44 35.891 coe eve
45 -0.386 -3.54 3.15
47 61.944 65.56 -3.62
50 9.588 7.84 1.75
51 28.813
52 -7.245 e vee
53 -60.185 -58.20 -1.98
55 12.999 13.72 -0.72
59 21.764 22.95 -1.19
60 23.988 21.37 2.62

61 15.023
63 29.098 28.75 0.35
64 11.356 7.35 4.01
65 34.452 34.06 0.39
67 -2.342 -6.09 3.75
68 13.085 17.70 -4.62
69 20.602 e eve
72 -48. 820 -44.12 -4.70

73 -76.765 vee e
75 -43.598 -39.18 -4.42

111 -32.149

= h - H, where h is ellipsoid height and H is mean sea
level elevation.

L = +3.33, and rms = +5.57 for AW.
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TABLE 17, Station Shifts

Station Datum AX, m AY, m AZ, m N, m Ellipsoid
002 North American ~15.464 -175.238 +170.683 -0.4 Clarke 1866
003 -15.073 -168.389 +176.173 -16.0
004 -14.839 -224.661 +125.460 -46.0
111 -14.909 -156.030 +174.079 -23.0
023 Australian -124.696 +59.448 +145.870 -4.6 Australian National
032 -122.122 +61.380 +148.912 +15.4
060 -120.584 +58.544 +140.350 +0.7
006 European -95.289 +87.386 -130.319 +12.6 International
015 -102.814 +116.573 -157.106 -38.0
016 -94.780 +97.941 -128.373 -16.6
065 -98.045 +94.773 -130.038 -0.6
042 Adindan -175.031 +22.702 +207.848 -8.0 Clarke 1880
063 -159.895 +18.666 +211.616 +20.7
064 -162.790 +18.035 +201.089 +23.6
009 South American 1969 -62.026 -30.896 -38.650 +24.6 South American
019 -84.870 -10.993 -28.779 +13.0
067 -79.113 +2.203 -44.415 +26.14
001 Qornoq +193.755 -152.336 -179.116 +32.0 International
007 SW Base -146.464 -189.307 -85.530 +55.569* International
008 Provisional South American 1956 -285.742 -124.472 -364,343 +3.0 International
011 0ld Hawaiian +89.609 +272.174 -204.940 +26.28 Clarke 1866
012 Astro 1952 +297.342 +62.206 +118.723 +0.837* International
013 Tokyo ~112.208 -476.369 +643.232 +27.0 Bessel
022 American Samoa 1962 -75.859 -125.169 +431.583 +22.0 Clarke 1866
031 Geodetic 1949 +86.529 +29.100 +204.364 -0.957+* International
043 Provisional South Chile 1963 +4,265 -209.046 +104.397 +14.554* . International
045 LePonce Astro 1880 -750.581 -159.580 -507.541 -0.386* Clarke 1880
047 Luzon -72.235 +115.447 -115.971 +61,944* Clarke 1886
055 Ascension Isl. 1958 -231.471 -111.769 +48.248 +12.999 * International
068 Buffelsfontein -153.391 +130.351 -283.829 +13.085%* Clarke 1880
072 Indian +230.419 -827.968 +291.150 -48.820* Everest
075 Mah& 1971 +60.571 +197.879 -140.513 -43.598* Clarke 1880
007 Astro +12.302 +280.978 -173.013 - +55.569 * Combined solution
012 Astro 1952 -58.951 +415.588 +113.310 +0.837* a = 6378130
020 Astro 1967 +123.534 +85.205 +76.460 -11.045* f =1:298.25
038 Astro Isla Socorro +107.336 -99.244 +386.616 -37.901~* f =1:298.25
039 Astro 1967 +14,216 +17.322 +8.608 -22.170* f=1:298.25
040 Astro Anna 1965 -490.078 -32.066 +417.173 -34.237* f = 1:298.25 .
044 Astro 1969 ~-118.468 -111.631 +55.102 +35.891* f = 1:298.25
045 Astro LePonce -1058. 365 -479.038 -451.105 -0.386* f =1:298.25
050 Astro 1969 +283.896 +86.525 +95.174 +9.588* f = 1:298.25
051 Astro 1969 -11.130 +49.721 -20.296 +28.813* f =1:298.25
052 Astro 1969 -34.580 +8.773 +1.786 -7.245*% f =1:298.25
053 Astro Camp Area 1961/1962 -74.517 +95.634 +10.908 -60.185% f =1:298.25
059 Astro Christmas Isl. 1967 -84.514 -154.619 -528.955 +21.764 * f = 1:298.25
061 Astro -669.022 -8.101 -390.231 +15.023* f =1:298.25
069 Astro 1968 -434.,607 -392.099 -672.974 +20.602* f =1:298.25
073 ISTS Astro 1969 +313.175 +132.303 -246.794 -76.765* f =1:298.25

A equals combined solution minus survey parameter.

*N was obtained from combined solution (Table 16, combined solution) because of lack of corresponding survey

from classic geodetic surface measurements executed between
several pairs of world net stations. Because the method of
geometric satellite triangulation is based on absolute direc-
tions as obtained by interpolating the satellite position into the
background of the surrounding field of fixed stars, the
triangulation results can at best be only as accurate as the
astronomical system of right ascension-declination itself. This
situation holds for both the relative accuracy of the reference
stars and the absolute accuracy of the astronomical reference
system in its entirety. The photogrammetri triangulation, as a
result of the high redundancy of data, should provide a result
valid to about | part in 2 million in terms of the average
station-satellite distance, in other words, station positions with
an accuracy of +3 to +4 m in all three coordinates. The
statistical information obtained as a by-product of the various
data reduction steps indicates that the accuracy of the final
result does not entirely fulfill the theoretical accuracy expec-
tations. The statistically proven instability of the BC-4 camera
system must be considered as a possible source of a slight

data.

systematic error, which in the adjustment algorithm is un-
avoidably distributed in accordance with the minimum princi-
ple for residual errors. The good agreement of the
photogrammetric triangulation result with the measured base
lines around the world indicates however that the final result is
essentially free of significant bias errors. A comparison
between the result of the geometric triangulation and the cor-
responding result obtained by dynamic satellite geodesy from
Doppler data, as computed by the DMA and the Navy, shows
excellent agreement in an overall sense but significant dis-
crepancies in a few places on the globe. A combination of both
results that respects fully the covariance of the
photogrammetrically derived directions becomes possible by
assuming a weighting of the dynamically determined coor-
dinates in accordance with a station position mean error of
+3.5 m. The only significant difference between the Navy-8D
dynamically determined result and the geometric triangulation
is in terms of scale, the indication being that the dynamic solu-
tion is based on’ a scale larger by 2 parts in a million. The
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TABLE 18.

ScHMID: WORLDWIDE GEOMETRIC SATELLITE TRIANGULATION

patum Shifts

Residual Coordinate
Differences After

Datum Shift Parameters

Datum Shift A)x Rotation Translations
+) East

Datum Stations Ap, m AX East, m AR, m Scalar XtoVY AX, m AY, m AZ, m

North American 002 -1.9 -1.9 -2.4 1.0000000656 -0.7680" -31.6 +171.1 +173.4
003 +6.1 -0.5 -2.2
111 -2.6 +2.1 +4.6

Australian 023 +1.2 +1.4 +1.6 0.9999999399 +0.0730" -124.1 -61.0 +144.9
032 +2.8 +0.3 -2.8
060 -4.8 -1.9 +1.1

European 006 -0.1 -0.3 +0.2 0.9999991720 +0.7563" -96.4 -78.9 -125.6
016 -0.2 -0.3 +0.9
065 +0.4 +0.4 -1.1

South American 009 +5.4 +10.4 -3.4 0.9999949067 +0.7101" -43.5 -1.9 -44.,1
1969 019 -2.3 -13.5 -0.4
067 -3.3 +1.1 +3.7

Adindan 042 +1.3 +0.6 -2.2 0.9999999794 -0.5231" -162.6 -34.0 +206.9
063 +5.1 -0.2 -0.6
064 -6.5 -0.4 +2.8

geometric solution suggests a value of 6,378,130 m for the REFERENCES

equatorial radius a of a best-fitting ellipsoid.
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