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THE STELLAR TRIANGULATION WITH
PHOTOGRAPHIC OBSERVATIONS

A. J. CORPACIUS
LTV Temco Aerosystems, Dallas, Texas, USA

(Received October 10, 1964)

Abstract. A general method for the adjustment of stellar triangulation using photographic obser-
vations of artificial satellites, missiles or rockets with stars in the background is suggested. This
approach recognizes the plate readings as basic data and makes use of the astronomical method of
dependences in establishing the conditional equations. The method is valid for both stationary and
nonstationary camera systems. Its simplicity makes possible the adjustment in a block — as organic
unit — of a world-wide triangulation with photographic observations. Since it is intended to establish
a working system from this theory, some controversial engineering aspects are discussed while the
method is critically compared with the familiar photogrammetric approach. A historical review
and a synthesis of the contemporary efforts for the development of a world-wide stellar triangulation
are presented.

1. Introduction

The stellar triangulation with photographic observations fulfils simultaneously two
immediate objectives: (1) the unprecedented accurate space location of artificial
satellites, missiles and rockets and (2) the building of a globe-wide network of super-
control points.

The precise location of space objects is important for problems of national defense
and for the investigation of space phenomena; e.g., effects on space navigation due
to gravity and magnetic anomalies, air drag, cosmic radiation, etc.

On the other hand, a network of supercontrol points distributed conveniently
over continents and islands (Figure 1) to satisfy the stringent cartographic needs,
would benefit every country.

A global network eliminates the existing discrepancies among the national triangu-
lations and makes possible the reduction of all mapping systems to a unique datum.

Furthermore, the ““geodetic integration” of the world throughout a stellar triangu-
lation is helpful for the accurate determination of continental tides and for valid
studies about the equilibrium of the earth’s core.

The unprecedented accuracy of the stellar triangulation is owed to its photographic
observations which (unlike the visual observations) are not affected by the systematic
errors of the gravity field.

This feature is remarkable because it opens the way for the strictly geometric
determination of the earth figure without reference to gravity and its anomalies.

The scientific and practical implications of these and other prospects are, indeed,
farreaching. They already have been recognized by the XIII General Assembly of
the International Union of Geodesy and Geophysics held in Berkeley, California,
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Fig. 1. Tentative suggestion for a world-wide geodetic network.

USA, August 1963, which adopted a resolution recommending immediate cooperation
among nations for the effective prosecution of a world-wide stellar triangulation.

2. Background

It is apparent that stationary and nonstationary camera systems are used for the
observation of the stellar triangulation.

A comprehensive discussion of both systems will be presented in this paper.

The discovery of the stellar triangulation as well as the first observations with a
stationary camera are to be credited to Hoppman and Lohman (Scumip, 1963).
These German engineers used it in the 1930’s for trajectory measurements of shells
and small rockets. Then the method became part of the rocket testing in Peenemiinde
(Germany).

Because of the classified character of the work, no detail information of the first
successful results is available.

The original idea by Hoppman and Lohman, however, was to photograph space
flares against the starry sky, the same way as photographing terrestrial objects
surrounded by geodetic points. Thus, the mathematics of the stellar triangulation
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Fig. 2. The BC-4 ballistic camera installation at the Atlantic Missile Range, Air Force Missile

, U.S.A.

Florida

Patrick Air Force Base,

>

Test Center

High precision shutter drive mechanism used by the U.S. Coast and Geodetic Survey.

Fig. 3.
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with a fixed camera may be found in standard manuals of photogrammetry. That is
why the stationary camera system is usually known as a photogrammetric method.

After the Second World War, German immigrants brought the photogrammetric
method in the United States.

Fig. 4. High-precision gearing used by the U.S. Coast and Geodetic Survey for star and satellite
trail chopping.

Initially, it was adopted by the Army Ballistic Research Laboratory, Aberdeen
Proving Ground, Maryland, and then by the Air Force Missile Test Center, Patrick
Air Force Base, Florida (Fig. 2).

In 1962, U.S. Coast and Geodetic Survey also adopted the photogrammetric
method for its new Satellite Geodesy Program.

On the other hand, the mobile camera system has been suggested by VAISALA
(1946). He was the first to take photographs (with an equatorially mounted and driver
reflecting telescope designed by himself) of flares against the stars on clear nights
when the flares were visible from distant camera stations.

Because of the postwar shortage in material, Viisili’s experiments had to be
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240 A. J. CORPACIUS

interrupted and only in 1959 could they start again in collaboration with the Geodetic
Institute in Finland (KUKKAMAKI, 1959).

On account of the quite satisfactory results of these field experiments, the Geodetic
Institute in Finland decided upon the prosecution of a stellar triangulation across
the country. For this purpose, three Vaisila reflecting telescopes have been ordered
(at a price of § 20 thousand each) and are presently under construction (KUKKAMAKI,
1963).

Meanwhile, quite refined and expensive experiments with the stationary camera
were conducted by various United States agencies. As an example, the actual photo-
grammetric system of U. S. Coast and Geodetic Survey is a matter of § years of
development at an estimated cost of some $ 3 million (TAYLOR and LAMPTON, 1964).

The system was designed around the Wild BC-4 (300 mm focus) ballistic camera
for a network of satellite triangulation over the United States (YEAGER, 1964). Ap-
parently, the experiments by U. S. Coast and Geodetic Survey led to the development
of two accessories; an electronic synchronization device (Figure 3), and a high-
precision gearing (Figures 4). The synchronization device operates the shutter timing
and synchronization in a multistation observing program within + 100 microseconds,
while the high-precision gearing is responsible for the passive satellite and star trail
chopping (U. S. Coast and Geodetic Survey, 1962).

This report suggests a new stellar triangulation theory valid for both fixed and
mobile camera systems. Earlier results of the method have been presented at the
Forty-First and Forty-Third Annual Meetings of the American Geophysical Union
(Corpacius 1960, 1962) and at the XIII General Assembly of the International
Union of Geodesy and Geophysics, 1963.

3. Description of the Theory

Starting with the improved Method of Dependences (COMRIE, 1929), assume a set
of simultaneous photographs of a flare with stars in the background made from
various camera stations.

The direction cosines of the rays joining the flare and the camera stations can be
accurately computed by the following procedure:

Assume three material points P, (xy, 1), P,(x3, ¥,), P3(x3, y3) forming a triangle.
The obvious barycentric coordinates (x,, yo) of any point P, which is coplanar with
P, P,P; can be expressed by

Xo =Dyxy + Dyxy + Dyx5 (D

Yo=D;y; + Dy, + D3y, @)

where the arbitrary parameters D,, D,, D5, called dependences, are the mass of the
points P;, P,, P;, respectively.
Now determine the parameters D;(i=1, 2, 3) by satisfying the condition

1=D,+ D, + D, (3
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Thus, the solution of Equations (1), (2) and (3) leads to the unique value of the
parameters

D1=f1j; D2=ftj§ D3=% 4)
Where
Ay = XYz — X2¥o + X3Yo — Xo¥3 + X2V3 — X3 %)
A, = Xoy3 — X3Y0 + X1Vo — Xo¥1 + X3¥1 — X1V3 (6)
A3 =Xoy1 — X1Yo + X2V0 — Xo¥2 + X1¥2 — X2)1 (7
A =X1Y; — X3Y1 + X3Y1 — X1V3 + X33 — X3)3. (3)

If more than three stars are available, the least squares solution leads to adjusted
D,(i=1,2, ..., n) given by the formula (4):

1 )
Di:B(xi—x)-i_C(yi—'y)"_; 4"
where

A=~ 900 -7 - [ = DO - P )
B = {x0 = D0 = 9]~ o = H[(x = D = 5T ©)

€ =2 {00 = D[ = 9] = (5o~ D[(x = D = P @)
Z?=1xi, Z?=1J’i

= s y— =
n n

=

(&)

where n is the number of stars. See also GENARO and TAFFARA (1946).

Since more than three stars do not improve the final result (COMRIE, 1929), the
treatment to follow is referred to only three stars.

It is important to emphasize that Equations (1) and (2) conserve their form by
every linear transformation of x, y. Thus, as consequence of condition (3), D, are
invariants against linear transformations of x;, y; and x,, y,, which logically show
that translation and orientation of axes of coordinates and scale factor are immaterial
so far as D; is concerned. From this fact arises the astronomical method of de-
pendences for computing the right ascension o and declination ¢ of stars, without
knowing orientation calibration of camera and scale factor of photographs.

The formulae by CoMriE (1929):

ag =08+ Di(e; — &) —tand[ Y. D;(ot; — &) (8; — 8) — (0tg — &) (80 — 6)] 9)
5o =23+ Y.D;(5;,— ) + S“fs [Y Do — @)* — (oo — &)°] (10)
(i=1,2,3)

might be used for computing the spherical coordinates «,, J, of a new star by means
of dependences D; and spherical coordinates a,d; of three reference stars. (&, § are the
spherical coordinates of an arbitrary reference center. For computational simplicity,
the reference center can be chosen in one of the above reference stars.)
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Returning to the stellar triangulation, an absolute (sidereal) coordinate system
OXYZ (Figure 5) considered in the center of a reference ellipsoid is adopted. (The
axis OX coincides with the line of equinox, OZ with the line of poles and OY is
perpendicular on the plane XOZ and directed toward the east.)

zZ=-Z

X -
X

Fig. 5. The astronomic (absolute) and the terrestrial coordinate systems.

The direction cosines

U = COS &y COS Jy (11)
v = sin o, cos d (12)
w = sinod, (13)

of the ray joining the camera station and flare location between stars, can be computed
by means of Formulae (9) and (10). Moreover, camera station C(X¢, Y¢, Z¢) and
flare position Py(X, Y, Z) are related by formulae

vl

~i

¥_x == tan o, (14)
Z_ — Z_C _w_tan 0o 15)
X—Xc u cosw
or
@ =(X— X¢)sinag — (¥ — Y)cosay =0 (16)
¥ =(X—X.)sinag —(Z — Z¢)cosagcosdy =0. (17)

Since the stellar triangulation is a geodetic problem, it is convenient to express
the formulae (16) and (17) in the terrestrial space-time system OXYZT (Figure 5).
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The transformation from the sidereal system OXYZ (which does not rotate with
the earth) to the terrestrial or geodetic space-time system is given by the formulae:

X cosT sinT O X
[Y =l—-sinTcosT O] Y] (18)
Z 0 0 1 Z

where T is the geodetic time of the event.
The idea of geodetic time is introduced to avoid confusion with the standard time.
As a result of (18), Equations (16) and (17) become

& =(X—Xg)sin(eg—T)— (Y — Ye)cos(ag— T)=0 (19)
and
Y= (X — X¢)sindy — (Z — Z¢) cos(og — T) cosdp, =0. (20)

The formulae (19) and (20) enjoy two important properties: they are general
and independent. In other words, any projective relationship between a camera
station and flare might be somehow related to (19) and (20).

It is suitable to convert (19) and (20) into conditional euqations by expressing
o, and J, in function of independently measured elements which are the plate co-
ordinates x,y, of the flare P, and x;y; of stars P,(i=1, 2, 3).

Therefore, after replacing in the last terms of (9) and (10) op—& by X(o;—&)D;
and §,—90 by Z'(6;—0)D;, Equations (9) and (10) are written again in proper manner:

ag=a+|1— (8, —d)tand](ay — &) Dy + [1 — (6, — ) tand| (2, — &) D,

+[1 — (85 — 8) tan 8] (23 — &) D3 + (2¢; — &) (6, — &) tan§- D7
+ (e, — @) (6, — 8) tan - D3 + (a3 — &) (85 — ) tand- D3

2

+ tan8[(z, — 8)(5, — 3) + (o — @) (5, — 5)] DD, @b
+tand [(a, — &) (33 — 0) + (3 — &) (52 — )] D, D5
+tand [(a3 — @) (6, — ) + (o¢; — @) (95 — 8)] D3 D,
in 20
s0=0+[(6:-3) + -7 o,
- in 26 - in 25

+ [(52 —8) + (2, — @)? Sm4 ]Dz + [(53 —08) + (23 — &)’ SH; ]Ds

in 20 in 20
~ (o1~ DE — (2~ " D @

o 3
(02— 22202 (o — B (0r - D) DD,

in 26 sin 20

— (o — &) (a3 — &) - D,D3 — (a3 — &) (g — &) D3D,
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After introducing the auxiliaries:

=[1— (6, —d)tand](ay — &);  Aj ={(a; — &)(6; — J) tand
A, =[1—-(6,—90)tand]| (o, — ); 5 =(a; — &) (6, — d)tand
A;=[1—-(65—90)tand]|(az —a);  As= (a3 — &) (65 — ) tand

A, = tan‘?[(“l — @) (6, — 0) + (22 — &)(3; — 5)]
Ay =tand (e, — @)(63 — 3) + (a3 — &) (5, — ?)]
Az =tand[(a; — @) (6, — 0) + (o — @) (65 — 9)]

,sin 25 sin 20
B} =~ (“1 - &)2

(23)
By =(8; —8) + (2 — &)’

4
26 in 26

R e
= (52— 8) + (12 - 81“25 By = — (1 - 02

sin 26

By =—(0; — @) (2 — &)

sin 20

Bys = — (o, — @) (3 — @)

sln25
By =— (03 — @) (o — @)

Expressions (21) and (22) easily become:

ot =&+ A;D; + A,D, + AD; + A D? + A,D5 + A,D3
+ Ay,DD, + A;3D,D5 + A3, D3D, (24)

8, =90 + B,D, + B,D, + B;D, + B\D? + B,D5 + B,D?
+ By3D{D;, + B,3D,D5 + B3 D3D, (25)

Note that dependences D, D,, D5 are functions of directly measured plate co-
ordinates x,, yo and x;, y;(i=1, 2, 3) because of relationships expressed in (4), (5),
(6), (7) and (8). This solves the problem where the formulae (19) and (20) become
conditional equations.

The Taylor expansion of (19) and (20) leads to the following linearized form:

0D o0 6P o
& =D, + (73070>o dag + ( 5(;>o dX, + (6_Y_c>o dY, + <6—X—>0 dx
+ (a—qj) dy + <a_q>> dT =0  (26)
oY /s oT ),
Y4, + (a—gl> dag + (‘3—?—> ds, + < ai’) dX, + <a—l‘y> dZc + (a_y:) dx
00t /o 054 /o 0Xc /o 0Zc), 0X /o

or oY
+|—=])dZ+|— ) dT =0 (27)
oz /, JdT J,
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where do,, dd, may be eliminated by the help of (24) and (25) and supplemented by
(4) through (8).
The differential of (24) and (25) results in:
dOC0=AdD1+BdD2+DdD3 (28)

where 4, B, C, E, F, G and dD;(i=1, 2, 3) are given by:

A == Al + 2A1D1 + A12D2 + A31D3; E = B1 + 2Bl1D1 + B12D2 + B31D3
B =A2+2A£D2+A23D3 +A12D1; F =B2 +2B,2D2‘+‘B23D3 +B12D1 (30)
C = A3 +243D;5 + A3, D, + Ay;3D,; G = B; + 2B3D;3 + B3 Dy + B,3D,

and
;= U U, F U+ — 0, Uy, + — 1, + —,, v
© 0% Oyo ° 0xy ' dy, Tt 0x, dy, 7 0x; dys 7
(i=1,2,3)

Here v,, v,,, ..., etc., are unknown discrepancies (increments) corresponding to the
plate measurements x,, y,, ..., etc., respectively, while dD;/0x,, 0D;/0yy, . . ., €tc.
may be computed from (4), (5), ... (8).
We have
oD, __ (ys — J’2), 0D, _ (%3 — x3)
0%, 4 ’ dyo A
oD, =A1(}’3"J’2)_ 6D1= —Al(x3—x2)
0%, 4? ’ 6y1 4? 61)
0D, _ A(y3 — yo) — 41 (ys — Y1), oDy - A(x3 = xo) + 41 (x5 — x;)
0 4? ’ 3y, 4?
oD, __ A(yy = yo) + 41 (y2 — J’1)_ oD, _ A(x; —xo) — 41 (x5 — x1)
0% A* ’ 0y3 47
5D2=y3_y1_ aDz__(xz,_x1)
9%, 4 Yo 4
oD, _ - A(y3 — yo) + 4, (ys — J’2), 5_1)2 _ A(x3 — xo) — 4;(x3 — X,)
ox 4* C oy, 4*

1 Y1 (32)
0D2= —Az(}’3"‘J’1). QD_z_Az(xs—M)
0x, 4* ’ 0y, A*
% _ A(y1 — yo) + 4,(y3 — ,V1). oD, _ - A(xy — Xo) — A3 (x; — xy)
0x3 4? ’ dys. 4?
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5D3= "(J’Z—yl), oD, =(x2—x1)
5x0 A ’ a,VO A
0D, _ Ay, —yo) + 45(y5 — )72)_ 0D __ A(xy = Xo) — A3 (x3 — x3)
0%y 4? ’ 031 4 (33)
% _ A(y1 — yo) — 43(y3 — }’1)‘ 0D, _ A(xy — xo) + 43(x3 — x)
0%, 4* Ty, A?
%=43(}’2—J’1). aD3= — A3(x; — x;)
0x3 A* ’ 0ys A*
Finally, the absolute terms @,, ¥, in (26) and (27) and the coeflicients
cP o
—, — | ...etc.
0o /o 0Xc/o
and
<6SU <6‘1’ 0¥\
—, —1, — | ...etc.
0dty /o 004 /o 8Xc)0
are readily apparent from (19) and (20):
Do=¢=[(X— X¢)sin(xg — T) — (Y — Y) cos(y — T)Jo
Yo=¢=[(X — X¢)sindy — (Z — Z¢) cos(ag — T) c0s 85 o
oD
(5a—> =[(X — Xc) cos (% — T) + (Y — Y¢) sin(xo — T)]o
0/ 0
oY
(—) =[(Z - Z¢) sin(og — T) cosdo]o
0o /o
oY :
((,)7) = [(X — X¢) cosdg + (Z — Z¢) cos (g — T) sindy o
o/o
oD o¥
_ = U = —_— 1 — T * —_— — U’ = _— i 5 34
(530, = U= Lsinta =i (5 ), = Ui = L= sindel 34
o oY
= Ve =|cos(og—T)|o; — | = W,.=]cos(ag — T)cosd
(570), = vemleostao=mils (5 = e = [sos(ao = Ty <o
0P oY
— | =U =|sin(og — T)]o; — | =U" =|sind
<6X>0 [sin (2 — T)]o <6X>0 [sindo]o
oD oY
) oy == —1)]: Y =w=]-= — T)cosd
<6Y>0 [ — cos (e o <6Z >0 [ — cos(ag ) oo
oD :
57) = P =[—(X—=X¢)cos(ag— T) — (Y — Yo) sin(og — T)]o
0
oY
(—) =P =[—(Z—-2Z)sin(0g — T)cosdg]o-
oT /o

All auxiliaries being determined, the expressions

o0\ oy | ; (asv 5
— , - an —
P R B ) 0 060)y 0
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which enter in the linearized conditional equations (26) and (27) may be expressed
in terms of physical elements.
Referring to (28), (30), (31), (32), (33), and (34), we have:

od
<T> doy = Aoy, + bkoo + aqv,, + blvy1 + a,v,, + bzvy2 + azv,, + bsvy3 (35)
%o /0
where
od\ 1
Ao =\ — "‘[— A(Ys - )’2) + B(J’s - J’1) - C(J’z - )’1)]
0o /o4

oD\ 1
by = (%;)02[‘*‘ A(x3 — x3) = B(x3 ~x1) + C(x, — x1)]

a, = <@>05§[+ Ady (y5 — y,) — BA(ys — yo) + B4, (y5 — ¥,)
+ CA(y5 — yo) + C43(y5 — y,)]
b, = <6£> 4%[_ AAy (x5 — x5) + BA(x3 — xo) — B4, (x5 — x5)
— CA(x;, — %) — C43(x3 — x,)]  (36)
) + A4(y; — yo) — A41(y3 — y1) — B4, (y3 — 1)
— CA(y; = yo) — C45(y5 — yy)]
b, = (‘E) 1_2[_ AA(x3 — x0) + A4y (x5 — x1) + BAy (x5 — x4)
° + CA(x; — xo) + Cd3 (x5 — x,)] ~
g, = <7>o l[_ Ad(yy — yo) + A4y (v, — y1) + BA(y; — y,)
+ B, (v, — y1) + C45(y, — 31)]
by = <?¢>0Al—2[+ AA(x, — xq) — Ad{(x, — x1) — BA(x1 — xg)

oot
— B4, (x; — x;) — CA5(x, — x1)]
The same procedure as in (35) and (36) leads to:

b 4 oY , , , )
670 Odoco + 53; 0d50 = Aoy, + bovy, + ajv,, + biv,,

where again + a30x, + baty, + a3, + bavy, @7
1

ap = Z[_ L(ys—y2)+M(ys —y1) — N(y2— yy)]
1

bo = Z[L(xs — X3) — M (x5 — x1) + N(x5 — x4)]

1
a, = 23[1441();3 —35) = MA(y5 — yo) + M4, (y5 — ¥,)

+ NA(y; — yo) + NA3(y3 — y,)] (38)
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b = 4%[— LA, (x5 — x,) + MA(x3 — xo) — MA,(x5 — x5)
— NA(x; — Xo) — NA3 (x5 — x5)]
@y =3 [LA(3s = 0) = L4, (3 = y2) = MAs (3 — 1)
— NA(y; — yo) — NA3(y; — J’1)]
2 ='}[“ LA(x3 — xo) + LA; (x5 — x1) + MA, (x5 — xy)

(38)

+ NA(xy — Xo) + NA5(x3 — x4)]
ay = %[— LA(y, = po) + LA (y; — y1) + MA(y; — o)

+ MA,(y, — y1) + Nds(y, — y4)]
b = Z%[LA (x; — xo) — LA, (x; — x1) — MA(x; — xq)

- MAz(xz - x1) - NAs(xz - x1)]
with

I a‘I’A oY E M (W’B 0¥ FN O'PC 6‘PG
- <0“0>0 " <650>o ’ - (50‘0>o i <550>0 ’ B (6050)0 i <55o)0 .
The similarity and cyclical structure of coefficients (36) and (38), which moreover
characterize on the whole auxiliaries of this paper, simplify their deduction and
computation, and make possible a thorough checking.
Placing (35) and (37) in (26) and (27), and in view of (34), the conditional equations
of the transformation into the geodetic space-time coordinate system are

AUy, + bovy, + agv,, + byv, + a,v,, + byv,, + azv,, + bsvy,

39
+ UpdXy + VedY, +UdX+VdY +PdT+e=0 (39

14 ’ 14 7 ! !’ ! 7
agvy, + bovy0 + ajv,, + bjv, + ayv,, + bzvy2 + azv,, + bsv,,

40
+ UldX, + WidZ,+U'dX + W'dZ+P'dT +¢' =0 (40)

The coefficients in Equation (39) and (40) result from (34) combined with (36)
and (38).

The conditional equations (39) and (40) represent the most general case of adjust-
ment, namely the conditional adjustment with unknowns. All other existing forms of
adjustment may be considered as particular problems of this general case (HELMERT,
1907).

The conditional equations (39) and (40) show that the flare location is defined
by four variables, three in space and one in time. In other words, a trajectory with
photographic observations can be adjusted point by point in four dimensional space-
time.

Starting with the equations (39) and (40), three different computing methods can
be developed. The first method is the direct one, derived from the unchanged set of
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conditional equations (39) and (40); the second one is the correlative adjustment
resulting after the elimination of the unknowns dX,dY,dZ,dT; and finally the
mediate adjustment which is apparent when the discrepancies v, v, v,,, €tc., are
eliminated.

Since the computation to be chosen depends only on practical convenience, the
numerical application will show preference for one or the other method.

Here the general method is adopted.

The system of error equations deducted from (39) and (40) and written in matrix
symbols is

X1?

Av+ UX + E=0 (41)

while the least squares give the correlative and conditional equations
pp=A"K and U'K=0 (42)

Notice: the transpose of the matrices 4 and U in (41) are denoted in (42) by AT
and U”.

Obviously, the normal equations become

[zjj g] [I;]*[}g]:o 43)

The solution of (43) and the subsequent error analysis are routine matters of the
electronic computation.

Nevertheless, the following remarks by WoLF (1962) should be of interest:

One could also conceive da, and dd, of Equations (26) and (27) as correlated
observations (i.e., mutually dependent) and for example to solve the matter according
to TIENSTRA as Standard Problem No. II (Bulletin Géodésique 1947, No. 6, page 311).
Whether one then ascertains the necessary Q,,, Qs> Qss from the peculiar adjustment
with more than three stars or simply based on your Equations (9) and (10), it would be
irrelevant for the computation with your Equations (26) and (27). Perhaps, it is possible
to build the conditional equations by choosing the reference stars in such a manner
that «, and J, become orthogonal functions (Q,;=0). Thus, do, and dd, in (26)
and (27) could then be handled as independent observations, of course with weights
1/Q,4 1/Q;s, respectively. The numerical result must naturally be absolutely the same
as from your adjustment, Wolf concluded.

These remarks will be considered in future investigations. The present report,
however, is referred to the three star dependence method only. As already pointed
out, a higher number of stars is not expected to increase the accuracy of the final result.

The experience shows that it is difficult to find a sufficient number of stars (close
to the flare) that a, and d, become orthogonal functions. Nevertheless, Wolf’s sugges-
tion may be feasible if artificial stars will be marked on the plates (BRUCKLACHER,
1961) in such a way that the orthogonality condition is satisfied. In this case, an addi-
tional star catalogue of the artificial stars, which could beincorporated in the computa-
tion routine, is needed.

© Kluwer Academic Publishers ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1965SSRv....4..236C

JBBSSRV: I I 41 1 236T

rt

250 A. J. CORPACIUS

4. Discussion and Error Analysis

The conditional equations (39) and (40) have been deducted from (16) and (17)
upon expressing a, and J, in terms of plate readings.

By establishing the equations (39) and (40), no use of camera orientation-cali-
bration is made. Hence, each conditional equation has six unknowns less (i.e., three
angles of exterior orientation and three elements of calibration). The computation
is simplified while the reduction is free of the systematic errors related to camera
orientation-calibration.

The decrease in number of the unknowns of each plate makes feasible the general
adjustment of an extensive stellar triangulation around the Earth as an organic unit.

A further benefit derived from Equations (30) and (40) is the correct study of
error propagation due to the adjustment in a block. The adjustment divided in groups
not only leads to an objectionable analysis of the error propagation, but it also
corrupts the final results because of the inadequate foundation of the probability
theory. More about the rigorous adjustment versus the forced adjustment divided in
groups will be commented on in Section 6.

The accuracy of the conditional equations (39) and (40) is reflected by Comrie’s
equations (9) and (10) which are valid up to the second approximation in 4o, and 44,.

Astronomical refraction, shimmer (refraction anomaly) resulting from atmospheric
turbulence, scintillation, lens and emulsion distortion, etc., are causes of disturbances
of the projective colinearity condition in image-space, and of inconsistencies in the
initial conditional equations (16) and (17). These may be partially eliminated by
skilled observation methods and refined photographic material and partially by
reductions applied as independent corrections to the plate coordinates. Of course,
residuals of such systematic errors are inevitable in the observation equations;
however, the linear expression of these residuals is immaterial so far as dependences
D, are concerned while the non-linear ones are carried throughout the adjustment by
the coefficients of the observation equations. Since the remainder of the errors are
of the second order, they do not affect the adjustment; only the concept of dependences
D, is modified in order to regard them as including the residual effects of the mentioned
corrections.

It is to be emphasized that the reduction method presented here uses 3 to 6 stars
close to the flare which are needed in both computation and control. The registration
of sufficient stars is self-evident with the mobile (e.g., the equatorially mounted and
driven) camera for which this reduction method is intended.

In this method, one needs not be concerned with the space intersection of rays
connecting two or more camera stations with the flare (BROwN, 1957). The conditional
equations (39) and (40) lead to both adjusted observations and flare space locations.
The rays will intersect in a point as part of the unique least squares solution.

Some 30 error sources affecting the photogrammetric camera system and its re-
duction method were pointed out by BRowN (1957). Since the published error diagram
is by no means exhaustive, many more unknown errors are particularly harmful in a
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photogrammetric camera characterized by a reduced focal length and an extensive
field of view.

In spite of these obstacles, photogrammetry has achieved a respected rank in
technology. This is true because the aforementioned errors have in photogrammetry
no practical significance inasmuch as the final photogrammetric product, the map,
always involves a scale factor (in amount of 1072 to 107° or less), small enough to
obviate most of the error effects.

The stellar triangulation with photographic observations does not enjoy scale
factor and therefore, the study of error propagation becomes quite important.

The usual procedure for the accuracy determination of the photogrammetric
camera system requires (1) the rigorous evaluation of all sources of random and
systematic errors, and (2) the complete knowledge of the error distribution over an
extensive camera field. This approach is difficult to carry out because of insufficient
information about the behaviour of so many error sources.

It is possible sometimes to diminish or eliminate the error effects by skilled
observation and reduction methods instead of detecting and computing them one by
one. And this is what the method of dependences and the reduction presented here do.
This method should be immune to many of the aforementioned errors if certain
conditions peculiar to it as well as to the standard astrographic method are satisfied.

Let us discuss the features which should substantiate this point and define the
accuracy of the reduction method under consideration.

In the astrographic method, the following linear equations,

Xi - axi + byl + c (44)
Y =dx, + ey, + f

relate the standard coordinates X, Y;(i=1, 2, 3, ..., n, 0) of n reference stars and a
flare, with the measured coordinates x;, y;. The coefficients a, b, ¢, d, e and f are
called the plate constants. The least squares solution of the 2n equations resulting
from n reference stars leads to the numerical values of the plate constants.

It is to be pointed out that Equations (44) are valid only for the reference stars of
a restricted field. This is always accomplished in astrometry where the photographic
refractor and the reflecting telescope never exceed a 3° field of view. Obviously, for
stars distributed over quite a large field (33° to 76°) of a BC-4 ballistic camera the
equations (44) are not at all valid. They have to be completed with second and higher
order terms, and the errors of the field deformation must be kept under special control
(TURNER, 1893).

In this case the number of the plate constants increases, the physical phenomenon
becomes sophisticated and the presence of additional error sources is favorized.

The method under consideration here is developed by starting with the astro-
graphic assumption of a restricted star field for which the equations (44) are valid.
Hence, the dependences given by Equation (1), (2), and (3) can be deduced from the
astrographic equations (44) as follows.
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According to the least squares method, and starting with (44) as conditional
equations, the normal equations result ‘

(pxx)a + (pxy) b + (px) ¢ = (pxX)
(pxy)a + (pyy)b + (py)c = (pyX) (45)
(px) a+(py) b+(p) c=(pX)

which must be associated with
axo + by() + C = XO (46)

From (45) and (46) it results:

Xo X0 Yo 1
(pxX) (pxx) (pxy) ()| _,
(pyX) (pxy) (pyy) (py)
(rX) (@x) () (p)

Since the same weights are assumed to affect both X and Y coordinates, the
determinant (47) and the corresponding determinant for Y lead to

(47)

Xo=DiX{ +D,X, + ...D,X, (48)
and
Y0=D1Y1+D2Y2+...Dn},n (49)
where D;(i=1,2,3, ..., n) are the generalized dependences given by
D; = upx; + vpiy; + wp; (50)

According to the method of dependences, the quations (48) and (49) are a logical
development from

D1x1 + DzXZ + ...ann = xO
Dyyy +Dyys + ... Dpyy = Yo (51)
D1 + D2 + ..-Dn == 1

After considering the condition
Y. D} = minimum (52)

the expressions (51) and (52) lead to the least squares solution given by (4'). (See also
GENARO and TAFFARA, 1946.)

Finally, for three reference stars (n=3), the equations (51) become (1), (2) and
(3) which shows that the astrographic method is identical with the three stars de-
pendence method. (See also SMART, 1944, page 404; DE Korrt, 1955). For more
information on the dependence method, the studies by ARenD (1931, 1932, 1933)
and PLUMMER (1932) are recommended.

In order to discuss the effect of errors of the star catalogue, let us consider differ-
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ential formulas for three stars derived from (48) and (49):
dX, =D,dX, + D,dX, + D;dX; (53)
dY, =D, dY; + D, dY, + D; dY; (54)

and

Assuming that the dX; and dY; in (53) and (54) represent only random errors,
we logically have

. 0%, = Diok, + D30%, + Diox, (55)
an
0'22,0 = Dfa,z,l + D%a,zfz + D§a§3 (56)

where oy, 0y, 0x,, €tc., denote standard deviations.

When the errors in right ascension are considered equal to those in declination,
all standard deviations of the reference stars are equal, let us say, to o.

Thus, (55) and (56) become

0%, = 07, =0 (D] + D} + D}) (57)
The variances in X, and Y, are minimum if
D? 4+ D% + D} = minimum (58)

For defining the value of D,, D,, and D; which satisfy (58), let us consider the
identity

(D; — D,)* + (D, — D3)* + (D5 — D,)* = 3(D% + D} + D3) — (Dy + D, + D,)’

Taking into account (3), the identity (59) can be written as )
D} + D} + D} =%[(Dy, — D,)* + (D, — D;3)* + (D3 — D,)* + 1] (60)
Evidently, (60) is a minimum when
D,=D,=D;=4% (61)
and (57) becomes -
Ox, = Oy, =% ﬁ (62)

In other words, the effect of the errors arising from the star catalogue is a mini-
mum when the flare occupies the baricenter of the three reference stars. This fact
shall be taken into account by selecting the reference stars which enter in this re-
duction method.

As for the effect of the plate reading error in the computed flare position, it should
be minimized when again the flare occupies the centroid of well-placed reference
stars (ideally an equilateral triangle) in such a restricted field that the linear astro-
graphic solution is justified (PLUMMER 1932 and DE Kort, 1955).

The question now arises: Are more than three stars needed for the best performance
of this method and for the most accurate computation of the astronomic flare
location? From the above discussion upon the minimum effect of the error propa-
gation and in view of the existing astronomic works on dependences, the answer is
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quite simple. Obviously, the general solution of the dependence method is always
possible (see Formula (4")). However, it is hard to believe that more than three
stars do improve the final result significantly enough to justify the additional work.
On the contrary, more stars imply a more extensive and sophisticated sky field which
opposes the restricted field of the classical astrographic method. When one discusses
the dependence method discovered by SCHLESINGER (1926) and improved by COMRIE
(1929), now generally adopted in astronomy, one has in mind the three star de-
pendence method.

The remarkable simplifications introduced by the method of dependences, without
losing accuracy, have been pointed out by CoMmrIE (1929) and other astronomers.
These qualities are fully utilized in the present triangulation problem. Here, even
more than in astronomy, the minimum number of three reference stars for the
astronomical location of the flare is desirable. One should not be misled into believing
that redundant star observations would improve the flare location, for one must
recognize that in geodesy the stars do not furnish the final position of the object.
The stars only assist in the computation of the conditional equations (39) and (40)
which later enter in the adjustment of the triangulation. On the contrary, the re-
dundancy of stars observations necessarily increase the number of the v-terms in the
observation equations (39) and (40) without any improvement in the adjusted space
location of the flare, e.g., the proper unknowns X, ¥ and Z. According to the least
squares foundation, a higher accuracy for the adjusted flare location is expected by
increasing the number of the observation equations (not of the reference stars). In
other words, we have to be aware of a multi-camera station method with a minimum
star observation.

Since stars, comets and asteroids are considered at infinity, the visual rays from
different astronomical camera stations are parallel and the astronomers do not have
linear measurements and their related problems. Hence, the location of astronomic
objects is always expressed in spherical (angular) coordinates, e.g., right ascension
a and declination J.

The Geodesy, however, deals very much with lengths, because the geodetic
objects are always at a finite distance. Here the rays connecting the various camera
stations and the flare intersect and lead to additional geometric properties expressed
by the conditional equations of intersection. Obviously, these equations are not ideal
because of the errors in the plate readings and of the linearizing process. Nevertheless,
they are proper for the adjustment of the triangulation and their deduction from
only three stars is optimum.

On the line of these thoughts, some quantitative estimates are helpful:

Experience shows that the three stars dependence method in conjunction with a
800 mm focus camera lead to a standard deviation of the flare position of about
4 1.7 arc seconds.

Since each flare position will be computed independently from all available
triangles of stars, it is assumed that at least two independent computations of this
kind will be possible and the accuracy will increase to about + 1.7/\/5.
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Furthermore, the direction of the ray joining the camera station and the flare is
given by two equations; the accuracy of the flare location is then expressed by

+1.7//2x2.
In this triangulation method of multi-camera stations, a minimum set of three
cameras should operate simultaneously. (For improving the accuracy more cameras

are needed.) Thus, a standard deviation expressed by + 1.7/\/ 2 X 2% 3 is expected.

Finally, a rigorous block adjustment of the triangulation is expected to result in
an additional 159, improvement; and the overall accuracy of the stellar triangulation
is given by a standard deviation oa +0.42 arc seconds.

It is to be pointed out that this remarkable accuracy is higher than the astronomic
accuracy (£0.70 arc seconds) of the star catalogues used in the computation. This
illustrates the benefit of the aforementioned conditional equations of intersection
which are familiar in geodesy while missing in astronomy.

Undoubtedly the most important feature of the dependence method is the compu-
tation of the spherical coordinates («y, d,) of the flare directly from the observations
without the need for forming standard coordinates.

This makes possible the development of Equations (39) and (40) in terms of
plate readings in the same way as the development of theodolite equations in terms
of circular readings are done. In other words, the transition from the well-known
triangulation with fixed targets to the stellar triangulation with mobile targets is a
matter of replacing the theodolite by the photographic camera while the structure
of the mathematical model remains unchanged.

Since the photographic observations, unlike the theodolite observations, are free
of the systematic reference to gravity, the stellar triangulation represents the highest
degree of accuracy ever obtained in geodesy.

To advance the error analysis associated with Equations (9) and (10) it is necessary
to show that the dependences D,, D, and D; are invariant to any linear transfor-
mation of coordinates which shows that the knowledge of the center of the plate
expressed in spherical coordinates (&, 6) is immaterial as far as the computation of
the flare coordinates (o, Jo) is concerned.

Obviously, the equations (1), (2) and (3) lead to

Dy (xg — xo) + Dy (%3 — %) + D3 (X3 — Xo) =0 (63)
Dy (y1 — ¥o) + Dy(y2 — yo) + D3 (¥3 — ¥o) = 0. (64)

Let us now consider the general transformation of axes:

and

X;=a + bx; + cy;

yvi=d+ex;+ fy; (i=1,23). (65)
Replacing (65) in (63) and (64) results in:
3
Z D; [b (3; = x0) + c(c; — yo)] =0 (66)

i=1
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and

3
';1 Dyfe(x;i —xo) + f(¥yi = y0)] =0 67)
or
3 3
b'z Di(xi—xo)-l-c‘z D;(yi — o) =0 (68)
and 1—31 1—31
e';1 D;(x; — xo) + f ;1 D;(y; — y0) =0. (69)

In view of (63) and (64), the equations (68) and (69) are identically satisfied which
proves the invariance of D;(i=1, 2, 3) to any linear transformation of coordinates.
Thus, the center of the plate is immaterial in the computation of the flare location.

5. Passive and Active Satellites

There are two types of targets: (1) passive or sun-illuminated balloon satellites and
(2) active or self-illuminated satellites provided with a flashing light source.

(1) The most important advantage of the passive satellites is their reliable and
inexpensive sunlight source.

However, to convert the passive satellite into a target for stellar triangulation, it is
necessary to chop its photographic trails in such a way that each set of images corre-
sponds to a satellite position in space.

It is difficult to meet this goal even with the most accurate camera accessories.
It happens that the attempt of exact synchronization of the shutter openings has no
practical value here because of the inequal distance between the satellite and the
various camera stations (YEAGER, 1964).

To overcome this difficulty, ScumMID, (1964) suggested the computation of the
location of the satellite image by the help of a forced fitting of the observations into
a 5th order time polynomial. In other words, the true physical satellite location has
been replaced by a ficticious, computed location; and this is what one can do with
passive satellite observations.

(2) The active satellite eliminates any operational difficulty and computational
deficiency of this kind: The registration of the flashing light is punctual and it makes
the timing and chopping of the trail unnecessary; the simultaneity condition of
observation is automatically satisfied, the unique space location of the point of inter-
section of the rays is materialized and thus no computation of a ficticious satellite
is needed.

On the other hand, a reliable package of flashing lights, powerful enough to be
visible from more than one thousand kilometers, might be a severe engineering
problem.

Apparently, this problem has been solved — after years of experiments — at the
Patrick Air Force Base in Florida, where the launching of missiles provided with
hundreds of flashing lights and photographed from distant camera stations, should
presently be a routine matter.
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In conclusion, it is felt that the observation of the passive satellite which is in
itself a dependable and inexpensive target, requires difficult field operations while
the active satellite which is rather difficult to build asks for a less expensive camera
system and for simplified field and office operations.

6. Stationary and Nonstationary Camera Systems

The reader has been informed throughout this report about two camera systems
which might be used in the stellar triangulation: (1) the stationary or photogrammetric
camera and (2) the nonstationary or guided camera.

Fig. 6. Ballistic camera site with steel pier.

A variety of both types of cameras have been presented and described by VEIS
(1963). Since these cameras have been designed for quite different purposes, e.g.
ballistic trajectories, orbital and velocity satellite tracking, star statistics, none of
them fully satisfies the specific needs of a mobile stellar triangulation project. Certain
cameras are too heavy to be used in a geodetic field operation, others are of poor
construction, others are rather sophisticated while provided with improper telescopes
(short-focus), etc.

However, it is expected that the guided camera of the Geodetic Institute in
Helsinki, which is presently in development under Prof. Viisdld’s supervision, will
meet the requirements of the steliar triangulation.

The stationary or photogrammetric system has been conceived with the ballistic
camera Wild BC-4 (300 mm focal length) in mind. Some further features of this
system are pointed out below:

Due to the earth rotation, the earth-fixed camera leads to the familiar trail
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imagery of the stars. The trails, in turn, have to be chopped in order to convert them
into punctual images proper to comparator readings. The chopping operation re-
quires costly accessories which in themselves mean additional error sources and
complicate the overall system. Since each star is represented by more than one
image point, the star identification becomes cumbersome and sometimes problematic.

In addition, it is to say that the relatively poor star registration of the photo-
grammetric system makes it improper for the data reduction approach presented in
this report; most of the faint stars required by the dependency method do not register
on even the most sensitive emulsions when the light source is moving on the fixed
camera plate.

Fig. 7. Ballistic camera site with concrete pier.

A higher magnitude star registration is only possible with the guided camera
which compensates the earth rotation. Its extreme reliability has been proven for
more than one century. All existing astrographic catalogues are the product of the
guided camera observations.

The photogrammetric data reduction method, suggests the splitting of the compu-
tation in two independent parts: (1) the adjustment of camera orientation-calibration,
and (2) the adjustment of the triangulation (BRowN, 1957). The camera orientation-
calibration computed before-hand is assumed to be free of error and unchanged
during the event; its value is then introduced into the succeeding adjustment of the
triangulation.

This is the typical forced adjustment (Zwangsausgleichung) largely discussed by
many geodesists.

Of course, the block adjustment (die Ausgleichung in einem Guf3) which is free
of assumptions (BoL1z, 1923, 1939) should be preferred.
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When the camera is equatorially mounted and driven (guided) while the target
is an active satellite, the block adjustment becomes quite easy. Its mathematical
model is expressed by Equations (19) and (20), or (39) and (40).

Similar simplifications show the following mathematical model of the stellar
triangulation suggested by VAISALA and OTERMA (1960):

cos &, cos ;A7 + sin §;45 — p; = 0 (70)

where 47 and 4§ are corrections to some assumed hour angle and declination of one
camera station, while another camera is considered as origin.
This approach is referring likewise to the guided camera system and uses the same

Fig. 8. Setting up the BC-4 camera on steel pedestal.

three star dependence method for computing the direction cosines to the target.
However, the aim of Equation (70) is to compute the orientation between two non-
intervisible camera stations while Equations (39) and (40) deal with the coordinates
of targets and of unknown camera stations.

It is felt that a conditional equation of type (70) could be obtained from (39)
and (40) after the elimination of dX,dY,dZ. The elimination process becomes
straightforward in the case of the Hiran Triangulation (CorPAcCIUS, 1960).

The reliability of the photogrammetric system depends essentially from the
physical stability of the camera during the field operation and from the theoretical
and practical validity of the method of star orientation and calibration.

To satisfy somehow the camera stability, the pre- end post-star calibrations are
to be quick operations made shortly before and after the photography of the satellite.
For minimizing environmental disturbances, the camera is held in a temperature
controlled dome (Figure 2) and supported on an isolated and stable pedestal (Figures
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6, 7 and 8). Before the observations, the temperature in the dome is brought to the
outside conditions to allow for thermal stabilization, etc.

The field operations with a guided camera are greatly simplified. Here the star
images are punctual and thus no synchronization and gearing devices are needed.
When an active satellite provided with short duration flashing lights is used, the
camera operation is reduced to a single opening and closing of the shutter.

As for the accuracy of the observations, it is found difficult to believe that anyone
could secure better results with a short-focus photogrammetric camera than with a
longer focus guided telescope if the quality of the optics is comparable (HERGET,
1962).

Nevertheless, a world-wide stellar triangulation remains the all time major and
most complex geodetic enterprise. Besides the international cooperation among
nations, the project requires an extensive planning made by scientists who are fa-
miliar with international geodesy and accomplished by engineers who know the
endurance and frustrations of the geodetic field work (SWANSON, 1964).
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Institute of Technology, Delft, Holland; Prof. Dr. H. WoLF, Director of the Institute
for Theoretic Geodesy, Bonn University, Germany.
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